Synthetic Genomics: Repurposing Biological Systems for Applications in Engineering Biology

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xian Fu,  and , Yue Shen*, 
{"title":"Synthetic Genomics: Repurposing Biological Systems for Applications in Engineering Biology","authors":"Xian Fu,&nbsp; and ,&nbsp;Yue Shen*,&nbsp;","doi":"10.1021/acssynbio.4c00006","DOIUrl":null,"url":null,"abstract":"<p >Substantial improvements in DNA sequencing and synthesis technologies and increased understanding of genome biology have empowered the development of synthetic genomics. The ability to design and construct engineered living cells boosted up by synthetic chromosomes provides opportunities to tackle enormous current and future challenges faced by humanity and the planet. Here we review the progresses, considerations, challenges, and future direction of the “design–build–test–learn” cycle used in synthetic genomics. We also discuss future applications enabled by synthetic genomics as this emerging field shapes and revolutionizes biomanufacturing and biomedicine.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssynbio.4c00006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.4c00006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Substantial improvements in DNA sequencing and synthesis technologies and increased understanding of genome biology have empowered the development of synthetic genomics. The ability to design and construct engineered living cells boosted up by synthetic chromosomes provides opportunities to tackle enormous current and future challenges faced by humanity and the planet. Here we review the progresses, considerations, challenges, and future direction of the “design–build–test–learn” cycle used in synthetic genomics. We also discuss future applications enabled by synthetic genomics as this emerging field shapes and revolutionizes biomanufacturing and biomedicine.

Abstract Image

Abstract Image

合成基因组学:将生物系统重新用于工程生物学应用。
DNA 测序和合成技术的巨大进步以及对基因组生物学认识的加深,推动了合成基因组学的发展。通过合成染色体设计和构建工程活细胞的能力,为解决人类和地球当前和未来面临的巨大挑战提供了机遇。在此,我们回顾了合成基因组学中 "设计-构建-测试-学习 "循环的进展、注意事项、挑战和未来方向。我们还将讨论合成基因组学的未来应用,因为这一新兴领域将塑造并彻底改变生物制造和生物医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信