An equilibrated estimator for mixed finite element discretizations of the curl-curl problem

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
T Chaumont-Frelet
{"title":"An equilibrated estimator for mixed finite element discretizations of the curl-curl problem","authors":"T Chaumont-Frelet","doi":"10.1093/imanum/drae007","DOIUrl":null,"url":null,"abstract":"We propose a new a posteriori error estimator for mixed finite element discretizations of the curl-curl problem. This estimator relies on a Prager–Synge inequality, and therefore leads to fully guaranteed constant-free upper bounds on the error. The estimator is also locally efficient and polynomial-degree-robust. The construction is based on patch-wise divergence-constrained minimization problems, leading to a cheap embarrassingly parallel algorithm. Crucially, the estimator operates without any assumption on the topology of the domain, and unconventional arguments are required to establish the reliability estimate. Numerical examples illustrate the key theoretical results, and suggest that the estimator is suited for mesh adaptivity purposes.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae007","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new a posteriori error estimator for mixed finite element discretizations of the curl-curl problem. This estimator relies on a Prager–Synge inequality, and therefore leads to fully guaranteed constant-free upper bounds on the error. The estimator is also locally efficient and polynomial-degree-robust. The construction is based on patch-wise divergence-constrained minimization problems, leading to a cheap embarrassingly parallel algorithm. Crucially, the estimator operates without any assumption on the topology of the domain, and unconventional arguments are required to establish the reliability estimate. Numerical examples illustrate the key theoretical results, and suggest that the estimator is suited for mesh adaptivity purposes.
卷曲问题混合有限元离散的均衡估计器
我们为卷曲问题的混合有限元离散化提出了一种新的后验误差估算器。该估计器依赖于普拉格-辛格不等式,因此能完全保证误差的无常数上界。该估计器还具有局部高效性和多项式度稳健性。其构造基于片断式发散约束最小化问题,从而产生了一种廉价的令人尴尬的并行算法。最重要的是,估计器的运行不需要对域的拓扑结构做任何假设,而且需要非常规的论证来建立可靠性估计。数值示例说明了关键的理论结果,并表明该估计器适用于网格自适应目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信