Group-Invariant Max Filtering

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jameson Cahill, Joseph W. Iverson, Dustin G. Mixon, Daniel Packer
{"title":"Group-Invariant Max Filtering","authors":"Jameson Cahill, Joseph W. Iverson, Dustin G. Mixon, Daniel Packer","doi":"10.1007/s10208-024-09656-9","DOIUrl":null,"url":null,"abstract":"<p>Given a real inner product space <i>V</i> and a group <i>G</i> of linear isometries, we construct a family of <i>G</i>-invariant real-valued functions on <i>V</i> that we call <i>max filters</i>. In the case where <span>\\(V={\\mathbb {R}}^d\\)</span> and <i>G</i> is finite, a suitable max filter bank separates orbits, and is even bilipschitz in the quotient metric. In the case where <span>\\(V=L^2({\\mathbb {R}}^d)\\)</span> and <i>G</i> is the group of translation operators, a max filter exhibits stability to diffeomorphic distortion like that of the scattering transform introduced by Mallat. We establish that max filters are well suited for various classification tasks, both in theory and in practice.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09656-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a real inner product space V and a group G of linear isometries, we construct a family of G-invariant real-valued functions on V that we call max filters. In the case where \(V={\mathbb {R}}^d\) and G is finite, a suitable max filter bank separates orbits, and is even bilipschitz in the quotient metric. In the case where \(V=L^2({\mathbb {R}}^d)\) and G is the group of translation operators, a max filter exhibits stability to diffeomorphic distortion like that of the scattering transform introduced by Mallat. We establish that max filters are well suited for various classification tasks, both in theory and in practice.

Abstract Image

组不变最大过滤
给定一个实内积空间 V 和一个线性等距群 G,我们构建了一个 V 上的 G 不变实值函数族,我们称之为最大滤波器。在 \(V={\mathbb {R}}^d\) 和 G 有限的情况下,一个合适的最大滤波器库可以分离轨道,并且在商度量中甚至是双桥的。在\(V=L^2({\mathbb {R}}^d)\) 和 G 是平移算子群的情况下,最大滤波器对类似于马拉特引入的散射变换的衍射变形具有稳定性。我们从理论和实践上证明,最大滤波器非常适合各种分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信