{"title":"Twisted Kähler–Einstein metrics in big classes","authors":"Tamás Darvas, Kewei Zhang","doi":"10.1002/cpa.22206","DOIUrl":null,"url":null,"abstract":"<p>We prove existence of twisted Kähler–Einstein metrics in big cohomology classes, using a divisorial stability condition. In particular, when <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <msub>\n <mi>K</mi>\n <mi>X</mi>\n </msub>\n </mrow>\n <annotation>$-K_X$</annotation>\n </semantics></math> is big, we obtain a uniform Yau–Tian–Donaldson (YTD) existence theorem for Kähler–Einstein (KE) metrics. To achieve this, we build up from scratch the theory of Fujita–Odaka type delta invariants in the transcendental big setting, using pluripotential theory. We do not use the K-energy in our arguments, and our techniques provide a simple roadmap to prove YTD existence theorems for KE type metrics, that only needs convexity of the appropriate Ding energy. As an application, we give a simplified proof of Li–Tian–Wang's existence theorem in the log Fano setting.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 12","pages":"4289-4327"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22206","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove existence of twisted Kähler–Einstein metrics in big cohomology classes, using a divisorial stability condition. In particular, when is big, we obtain a uniform Yau–Tian–Donaldson (YTD) existence theorem for Kähler–Einstein (KE) metrics. To achieve this, we build up from scratch the theory of Fujita–Odaka type delta invariants in the transcendental big setting, using pluripotential theory. We do not use the K-energy in our arguments, and our techniques provide a simple roadmap to prove YTD existence theorems for KE type metrics, that only needs convexity of the appropriate Ding energy. As an application, we give a simplified proof of Li–Tian–Wang's existence theorem in the log Fano setting.
我们利用除法稳定性条件证明了大同调类中扭曲凯勒-爱因斯坦度量的存在性。特别是,当大同调时,我们得到了凯勒-爱因斯坦(KE)度量的统一游天-唐纳森(YTD)存在定理。为此,我们利用多势理论,从零开始建立了超越大背景下的藤田-大高(Fujita-Odaka)型三角不变式理论。我们在论证中不使用 K 能,我们的技术为证明 KE 类型度量的 YTD 存在性定理提供了一个简单的路线图,它只需要适当丁能的凸性。作为应用,我们给出了对数法诺环境中李天王存在性定理的简化证明。