A. Diaw, M. McKerns, I. Sagert, L. G. Stanton, M. S. Murillo
{"title":"Efficient learning of accurate surrogates for simulations of complex systems","authors":"A. Diaw, M. McKerns, I. Sagert, L. G. Stanton, M. S. Murillo","doi":"10.1038/s42256-024-00839-1","DOIUrl":null,"url":null,"abstract":"Machine learning methods are increasingly deployed to construct surrogate models for complex physical systems at a reduced computational cost. However, the predictive capability of these surrogates degrades in the presence of noisy, sparse or dynamic data. We introduce an online learning method empowered by optimizer-driven sampling that has two advantages over current approaches: it ensures that all local extrema (including endpoints) of the model response surface are included in the training data, and it employs a continuous validation and update process in which surrogates undergo retraining when their performance falls below a validity threshold. We find, using benchmark functions, that optimizer-directed sampling generally outperforms traditional sampling methods in terms of accuracy around local extrema even when the scoring metric is biased towards assessing overall accuracy. Finally, the application to dense nuclear matter demonstrates that highly accurate surrogates for a nuclear equation-of-state model can be reliably autogenerated from expensive calculations using few model evaluations. Machine learning-based surrogate models are important to model complex systems at a reduced computational cost; however, they must often be re-evaluated and adapted for validity on future data. Diaw and colleagues propose an online training method leveraging optimizer-directed sampling to produce surrogate models that can be applied to any future data and demonstrate the approach on a dense nuclear-matter equation of state containing a phase transition.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 5","pages":"568-577"},"PeriodicalIF":18.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00839-1","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning methods are increasingly deployed to construct surrogate models for complex physical systems at a reduced computational cost. However, the predictive capability of these surrogates degrades in the presence of noisy, sparse or dynamic data. We introduce an online learning method empowered by optimizer-driven sampling that has two advantages over current approaches: it ensures that all local extrema (including endpoints) of the model response surface are included in the training data, and it employs a continuous validation and update process in which surrogates undergo retraining when their performance falls below a validity threshold. We find, using benchmark functions, that optimizer-directed sampling generally outperforms traditional sampling methods in terms of accuracy around local extrema even when the scoring metric is biased towards assessing overall accuracy. Finally, the application to dense nuclear matter demonstrates that highly accurate surrogates for a nuclear equation-of-state model can be reliably autogenerated from expensive calculations using few model evaluations. Machine learning-based surrogate models are important to model complex systems at a reduced computational cost; however, they must often be re-evaluated and adapted for validity on future data. Diaw and colleagues propose an online training method leveraging optimizer-directed sampling to produce surrogate models that can be applied to any future data and demonstrate the approach on a dense nuclear-matter equation of state containing a phase transition.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.