The distribution of argmaximum or a winner problem

Pub Date : 2024-05-11 DOI:10.1016/j.spl.2024.110152
Youri Davydov , Vladimir Rotar
{"title":"The distribution of argmaximum or a winner problem","authors":"Youri Davydov ,&nbsp;Vladimir Rotar","doi":"10.1016/j.spl.2024.110152","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a limit theorem for the distribution of a random variable (r.v.) <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>arg</mo><msub><mrow><mo>max</mo></mrow><mrow><mi>i</mi><mo>:</mo><mn>1</mn><mo>…</mo><mi>n</mi></mrow></msub><mrow><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>’s are independent continuous non-negative random r.v.’s. The <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>i</mi><mo>=</mo><mn>1</mn><mo>.</mo><mo>…</mo><mo>,</mo><mi>n</mi></mrow></math></span>, may be interpreted as the gains of <span><math><mi>n</mi></math></span> players in a game, and the r.v. <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> itself as the number of a “winner”. The paper contains some limit theorems for the distribution of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a limit theorem for the distribution of a random variable (r.v.) An=argmaxi:1n{Xi}, where Xi’s are independent continuous non-negative random r.v.’s. The Xi,i=1.,n, may be interpreted as the gains of n players in a game, and the r.v. An itself as the number of a “winner”. The paper contains some limit theorems for the distribution of An as n.

分享
查看原文
最大值的分布或赢家问题
我们考虑随机变量(r.v.)An=argmaxi:1...n{Xi}分布的极限定理,其中 Xi 是独立的连续非负随机 r.v.。Xi,i=1....,n,可以解释为一场博弈中 n 个玩家的收益,而 r.v. An 本身则是 "赢家 "的数量。本文包含一些关于 An 随 n→∞ 分布的极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信