Isometric deformations of discrete and smooth T-surfaces

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Ivan Izmestiev, Arvin Rasoulzadeh, Jonas Tervooren
{"title":"Isometric deformations of discrete and smooth T-surfaces","authors":"Ivan Izmestiev,&nbsp;Arvin Rasoulzadeh,&nbsp;Jonas Tervooren","doi":"10.1016/j.comgeo.2024.102104","DOIUrl":null,"url":null,"abstract":"<div><p>Quad-surfaces are polyhedral surfaces with quadrilateral faces and the combinatorics of a square grid. Isometric deformation of the quad-surfaces can be thought of as transformations that keep all the involved quadrilaterals rigid. Among quad-surfaces, those capable of non-trivial isometric deformations are identified as flexible, marking flexibility as a core topic in discrete differential geometry. The study of quad-surfaces and their flexibility is not only theoretically intriguing but also finds practical applications in fields like membrane theory, origami, architecture and robotics.</p><p>A generic quad-surface is rigid, however, certain subclasses exhibit a 1-parameter family of flexibility. One of such subclasses is the T-hedra which are originally introduced by Graf and Sauer in 1931.</p><p>This article provides a synthetic and an analytic description of T-hedra and their smooth counterparts namely, the T-surfaces. In the next step the parametrization of their isometric deformation is obtained and their deformability range is discussed. The given parametrizations and isometric deformations are provided for general T-hedra and T-surfaces. However, specific subclasses are extensively examined and explored, particularly those that encompass notable and well-known structures, including the Miura fold, surfaces of revolution and molding surfaces.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000269/pdfft?md5=f783a67dd89d4ba5ecb5b55e3219f48b&pid=1-s2.0-S0925772124000269-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000269","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quad-surfaces are polyhedral surfaces with quadrilateral faces and the combinatorics of a square grid. Isometric deformation of the quad-surfaces can be thought of as transformations that keep all the involved quadrilaterals rigid. Among quad-surfaces, those capable of non-trivial isometric deformations are identified as flexible, marking flexibility as a core topic in discrete differential geometry. The study of quad-surfaces and their flexibility is not only theoretically intriguing but also finds practical applications in fields like membrane theory, origami, architecture and robotics.

A generic quad-surface is rigid, however, certain subclasses exhibit a 1-parameter family of flexibility. One of such subclasses is the T-hedra which are originally introduced by Graf and Sauer in 1931.

This article provides a synthetic and an analytic description of T-hedra and their smooth counterparts namely, the T-surfaces. In the next step the parametrization of their isometric deformation is obtained and their deformability range is discussed. The given parametrizations and isometric deformations are provided for general T-hedra and T-surfaces. However, specific subclasses are extensively examined and explored, particularly those that encompass notable and well-known structures, including the Miura fold, surfaces of revolution and molding surfaces.

离散和光滑 T 型曲面的等距变形
四曲面是具有四边形面和正方形网格组合的多面体。四曲面的等距变形可视为保持所有相关四边形刚性的变换。在四曲面中,能够进行非三等分等距变形的曲面被认定为柔性曲面,这标志着柔性成为离散微分几何学的核心课题。对四曲面及其柔性的研究不仅在理论上引人入胜,而且在膜理论、折纸、建筑和机器人学等领域也有实际应用。本文对 T 型曲面及其光滑对应物(即 T 型曲面)进行了合成和分析描述。接下来,文章将对 T 型曲面的等距变形进行参数化,并讨论其变形范围。给出的参数和等距变形适用于一般的 T 型面体和 T 型曲面。然而,对特定的子类进行了广泛的研究和探讨,特别是那些包含著名和众所周知的结构的子类,包括三浦褶皱、旋转曲面和成型曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信