SIDU-TXT: An XAI algorithm for NLP with a holistic assessment approach

Mohammad N.S. Jahromi , Satya M. Muddamsetty , Asta Sofie Stage Jarlner , Anna Murphy Høgenhaug , Thomas Gammeltoft-Hansen , Thomas B. Moeslund
{"title":"SIDU-TXT: An XAI algorithm for NLP with a holistic assessment approach","authors":"Mohammad N.S. Jahromi ,&nbsp;Satya M. Muddamsetty ,&nbsp;Asta Sofie Stage Jarlner ,&nbsp;Anna Murphy Høgenhaug ,&nbsp;Thomas Gammeltoft-Hansen ,&nbsp;Thomas B. Moeslund","doi":"10.1016/j.nlp.2024.100078","DOIUrl":null,"url":null,"abstract":"<div><p>Explainable AI (XAI) is pivotal for understanding complex ’black-box’ models, particularly in text analysis, where transparency is essential yet challenging. This paper introduces SIDU-TXT, an adaptation of the ’Similarity Difference and Uniqueness’ (SIDU) method, originally applied in image classification, to textual data. SIDU-TXT generates word-level heatmaps using feature activation maps, highlighting contextually important textual elements for model predictions. Given the absence of a unified standard for assessing XAI methods, to evaluate SIDU-TXT, we implement a comprehensive three-tiered evaluation framework – Functionally-Grounded, Human-Grounded, and Application-Grounded – across varied experimental setups. Our findings show SIDU-TXT’s effectiveness in sentiment analysis, outperforming benchmarks like Grad-CAM and LIME in both Functionally and Human-Grounded assessments. In a legal domain application involving complex asylum decision-making, SIDU-TXT displays competitive but not conclusive results, underscoring the nuanced expectations of domain experts. This work advances the field by offering a methodical holistic approach to XAI evaluation in NLP, urging further research to bridge the existing gap in expert expectations and refine interpretability methods for intricate applications. The study underscores the critical role of extensive evaluations in fostering AI technologies that are not only technically faithful to the model but also comprehensible and trustworthy for end-users.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"7 ","pages":"Article 100078"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719124000268/pdfft?md5=dbdccfd078388f5068c55b70fac52f1d&pid=1-s2.0-S2949719124000268-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719124000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Explainable AI (XAI) is pivotal for understanding complex ’black-box’ models, particularly in text analysis, where transparency is essential yet challenging. This paper introduces SIDU-TXT, an adaptation of the ’Similarity Difference and Uniqueness’ (SIDU) method, originally applied in image classification, to textual data. SIDU-TXT generates word-level heatmaps using feature activation maps, highlighting contextually important textual elements for model predictions. Given the absence of a unified standard for assessing XAI methods, to evaluate SIDU-TXT, we implement a comprehensive three-tiered evaluation framework – Functionally-Grounded, Human-Grounded, and Application-Grounded – across varied experimental setups. Our findings show SIDU-TXT’s effectiveness in sentiment analysis, outperforming benchmarks like Grad-CAM and LIME in both Functionally and Human-Grounded assessments. In a legal domain application involving complex asylum decision-making, SIDU-TXT displays competitive but not conclusive results, underscoring the nuanced expectations of domain experts. This work advances the field by offering a methodical holistic approach to XAI evaluation in NLP, urging further research to bridge the existing gap in expert expectations and refine interpretability methods for intricate applications. The study underscores the critical role of extensive evaluations in fostering AI technologies that are not only technically faithful to the model but also comprehensible and trustworthy for end-users.

SIDU-TXT:采用整体评估方法的 XAI NLP 算法
可解释的人工智能(XAI)对于理解复杂的 "黑箱 "模型至关重要,尤其是在文本分析中,透明度至关重要,但也极具挑战性。本文介绍了 SIDU-TXT,它是 "相似性差异和唯一性"(SIDU)方法的改良版,该方法最初应用于图像分类,现在也适用于文本数据。SIDU-TXT 利用特征激活图生成单词级热图,为模型预测突出上下文中重要的文本元素。由于缺乏评估 XAI 方法的统一标准,为了评估 SIDU-TXT,我们在不同的实验设置中实施了一个全面的三层评估框架--功能评估、人类评估和应用评估。我们的研究结果表明,SIDU-TXT 在情感分析方面非常有效,在功能评估和人类评估方面都优于 Grad-CAM 和 LIME 等基准。在涉及复杂庇护决策的法律领域应用中,SIDU-TXT 显示出了具有竞争力但并非决定性的结果,凸显了领域专家的细微期望。这项工作为 NLP 中的 XAI 评估提供了一种有条不紊的整体方法,从而推动了该领域的发展,并敦促开展进一步的研究,以弥合专家期望方面的现有差距,完善针对复杂应用的可解释性方法。这项研究强调了广泛评估在促进人工智能技术发展中的关键作用,这些技术不仅在技术上忠实于模型,而且对最终用户来说也是可理解和可信的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信