Adaptive switching and routing protocol design and optimization in internet of things based on probabilistic models

Yi Yang
{"title":"Adaptive switching and routing protocol design and optimization in internet of things based on probabilistic models","authors":"Yi Yang","doi":"10.1016/j.ijin.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Through smart cities, Intelligent Transportation Systems (ITS), the agricultural sector, and wearable devices, the Internet of Things (IoT) has revolutionized several human interests. Through the development of new cluster tasks, the Decision-Making System (DMS) of Cluster Heads (CHs), and improving the accuracy of traffic prediction and reliability of transportation, the present study intends to improve the energy depletion of IoT devices. The paper explores the subject of data flow optimization using Fuzzy Assisted Cuckoo Search Optimization (FACSO), traffic flow using Gaussian Process Regression (GPR), and CH prediction using the Stochastic Optimization Algorithm (SOA). Optimizing network lifetime while minimizing Energy Consumption (EC) is feasible through the practical application of the SOA, GPR, and FACSO models. Increasing End-to-End Delay (EED), Network Throughput (NT), and energy efficiency can be rendered feasible through a real-time DMS regarding routing employing a novel approach referred to as FACSO. This approach has enhanced the efficacy and reliability of Wireless Sensor Networks (WSN). With up to 500 nodes and an EC of 0.3451 <em>J</em>, the experiment's findings demonstrate that a proposed SOA-FACSO model achieves superior EED.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"5 ","pages":"Pages 204-211"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666603024000204/pdfft?md5=c394d35467f0128cd144f6b6466e3280&pid=1-s2.0-S2666603024000204-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603024000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Through smart cities, Intelligent Transportation Systems (ITS), the agricultural sector, and wearable devices, the Internet of Things (IoT) has revolutionized several human interests. Through the development of new cluster tasks, the Decision-Making System (DMS) of Cluster Heads (CHs), and improving the accuracy of traffic prediction and reliability of transportation, the present study intends to improve the energy depletion of IoT devices. The paper explores the subject of data flow optimization using Fuzzy Assisted Cuckoo Search Optimization (FACSO), traffic flow using Gaussian Process Regression (GPR), and CH prediction using the Stochastic Optimization Algorithm (SOA). Optimizing network lifetime while minimizing Energy Consumption (EC) is feasible through the practical application of the SOA, GPR, and FACSO models. Increasing End-to-End Delay (EED), Network Throughput (NT), and energy efficiency can be rendered feasible through a real-time DMS regarding routing employing a novel approach referred to as FACSO. This approach has enhanced the efficacy and reliability of Wireless Sensor Networks (WSN). With up to 500 nodes and an EC of 0.3451 J, the experiment's findings demonstrate that a proposed SOA-FACSO model achieves superior EED.

基于概率模型的物联网自适应交换和路由协议设计与优化
通过智能城市、智能交通系统(ITS)、农业领域和可穿戴设备,物联网(IoT)已经彻底改变了人类的若干利益。通过开发新的簇任务、簇头(CHs)决策系统(DMS)以及提高交通预测的准确性和运输的可靠性,本研究意在改善物联网设备的能量消耗。本文探讨了使用模糊辅助布谷鸟搜索优化(FACSO)优化数据流、使用高斯过程回归(GPR)优化流量以及使用随机优化算法(SOA)预测 CH 的课题。通过 SOA、GPR 和 FACSO 模型的实际应用,在优化网络寿命的同时最小化能源消耗(EC)是可行的。提高端到端延迟(EED)、网络吞吐量(NT)和能效可以通过实时 DMS(关于路由的实时 DMS)和一种称为 FACSO 的新方法来实现。这种方法提高了无线传感器网络(WSN)的效率和可靠性。在多达 500 个节点和 0.3451 J EC 的情况下,实验结果表明,建议的 SOA-FACSO 模型实现了卓越的 EED。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信