Xiangshu Yuan, Ya Wang, Xiyuan Li, Sheng Zhong, Danyi Zhou, Xianlong Lin, Hezhi Fang, Yanling Yang, Maofeng Wang
{"title":"Loss-of-function mutation in DDX53 associated with hereditary spastic paraplegia-like disorder.","authors":"Xiangshu Yuan, Ya Wang, Xiyuan Li, Sheng Zhong, Danyi Zhou, Xianlong Lin, Hezhi Fang, Yanling Yang, Maofeng Wang","doi":"10.1007/s00109-024-02454-4","DOIUrl":null,"url":null,"abstract":"<p><p>DEAD-box helicase 53 (DDX53) is a member of the DEAD-box protein family of RNA helicases. Unlike other family members that are responsible for RNA metabolism, the biological function of DDX53 and its impact on the human condition are unclear. Herein, we found a full-length DDX53 deletion mutation in a hereditary spastic paraplegia-like (HSP-like) patient with lower extremity spasticity, walking disorder, visual impairment, and lateral ventricular white matter lesions. Bioinformatic analysis revealed that DDX53 was mainly expressed in the cerebellar cortex and may function as a tissue-specific RNA helicase. Transcriptome analysis showed that the expression of multiple brain-associated genes involved in synapse organization, neuron function, and neuromuscular junctions was affected by DDX53 depletion. Moreover, RNA immunoprecipitation sequencing (RIP-seq) analysis showed that DDX53 interacted with 176 genes, and 96 of these genes were associated with the execution of neurofunction, particularly in the regulation of cell projection organization and nervous system development. Collectively, although a more specified cell or animal model is required to fully understand the functional role of DDX53 in the human brain, we report for the first time that the patient with DDX53 defects exhibits HSP-like symptoms and that DDX53 is essential for maintaining neuronal function, with loss-of-function mutation in DDX53 potentially leading to HSP due to impaired RNA metabolism in the nervous system. KEY MESSAGES: DDX53 deficiency was first reported to be associated with HSP disorder. DDX53 exhibited minimal impact on mitochondrial function. DDX53 impaired RNA metabolism in the nervous system.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"913-926"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-024-02454-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
DEAD-box helicase 53 (DDX53) is a member of the DEAD-box protein family of RNA helicases. Unlike other family members that are responsible for RNA metabolism, the biological function of DDX53 and its impact on the human condition are unclear. Herein, we found a full-length DDX53 deletion mutation in a hereditary spastic paraplegia-like (HSP-like) patient with lower extremity spasticity, walking disorder, visual impairment, and lateral ventricular white matter lesions. Bioinformatic analysis revealed that DDX53 was mainly expressed in the cerebellar cortex and may function as a tissue-specific RNA helicase. Transcriptome analysis showed that the expression of multiple brain-associated genes involved in synapse organization, neuron function, and neuromuscular junctions was affected by DDX53 depletion. Moreover, RNA immunoprecipitation sequencing (RIP-seq) analysis showed that DDX53 interacted with 176 genes, and 96 of these genes were associated with the execution of neurofunction, particularly in the regulation of cell projection organization and nervous system development. Collectively, although a more specified cell or animal model is required to fully understand the functional role of DDX53 in the human brain, we report for the first time that the patient with DDX53 defects exhibits HSP-like symptoms and that DDX53 is essential for maintaining neuronal function, with loss-of-function mutation in DDX53 potentially leading to HSP due to impaired RNA metabolism in the nervous system. KEY MESSAGES: DDX53 deficiency was first reported to be associated with HSP disorder. DDX53 exhibited minimal impact on mitochondrial function. DDX53 impaired RNA metabolism in the nervous system.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.