Machine Learning Strategies in MicroRNA Research: Bridging Genome to Phenome.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-05-01 Epub Date: 2024-05-15 DOI:10.1089/omi.2024.0047
Sonet Daniel Thomas, Krithika Vijayakumar, Levin John, Deepak Krishnan, Niyas Rehman, Amjesh Revikumar, Jalaluddin Akbar Kandel Codi, Thottethodi Subrahmanya Keshava Prasad, Vinodchandra S S, Rajesh Raju
{"title":"Machine Learning Strategies in MicroRNA Research: Bridging Genome to Phenome.","authors":"Sonet Daniel Thomas, Krithika Vijayakumar, Levin John, Deepak Krishnan, Niyas Rehman, Amjesh Revikumar, Jalaluddin Akbar Kandel Codi, Thottethodi Subrahmanya Keshava Prasad, Vinodchandra S S, Rajesh Raju","doi":"10.1089/omi.2024.0047","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) have emerged as a prominent layer of regulation of gene expression. This article offers the salient and current aspects of machine learning (ML) tools and approaches from genome to phenome in miRNA research. First, we underline that the complexity in the analysis of miRNA function ranges from their modes of biogenesis to the target diversity in diverse biological conditions. Therefore, it is imperative to first ascertain the miRNA coding potential of genomes and understand the regulatory mechanisms of their expression. This knowledge enables the efficient classification of miRNA precursors and the identification of their mature forms and respective target genes. Second, and because one miRNA can target multiple mRNAs and <i>vice versa</i>, another challenge is the assessment of the miRNA-mRNA target interaction network. Furthermore, long-noncoding RNA (lncRNA)and circular RNAs (circRNAs) also contribute to this complexity. ML has been used to tackle these challenges at the high-dimensional data level. The present expert review covers more than 100 tools adopting various ML approaches pertaining to, for example, (1) miRNA promoter prediction, (2) precursor classification, (3) mature miRNA prediction, (4) miRNA target prediction, (5) miRNA- lncRNA and miRNA-circRNA interactions, (6) miRNA-mRNA expression profiling, (7) miRNA regulatory module detection, (8) miRNA-disease association, and (9) miRNA essentiality prediction. Taken together, we unpack, critically examine, and highlight the cutting-edge synergy of ML approaches and miRNA research so as to develop a dynamic and microlevel understanding of human health and diseases.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/omi.2024.0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNAs (miRNAs) have emerged as a prominent layer of regulation of gene expression. This article offers the salient and current aspects of machine learning (ML) tools and approaches from genome to phenome in miRNA research. First, we underline that the complexity in the analysis of miRNA function ranges from their modes of biogenesis to the target diversity in diverse biological conditions. Therefore, it is imperative to first ascertain the miRNA coding potential of genomes and understand the regulatory mechanisms of their expression. This knowledge enables the efficient classification of miRNA precursors and the identification of their mature forms and respective target genes. Second, and because one miRNA can target multiple mRNAs and vice versa, another challenge is the assessment of the miRNA-mRNA target interaction network. Furthermore, long-noncoding RNA (lncRNA)and circular RNAs (circRNAs) also contribute to this complexity. ML has been used to tackle these challenges at the high-dimensional data level. The present expert review covers more than 100 tools adopting various ML approaches pertaining to, for example, (1) miRNA promoter prediction, (2) precursor classification, (3) mature miRNA prediction, (4) miRNA target prediction, (5) miRNA- lncRNA and miRNA-circRNA interactions, (6) miRNA-mRNA expression profiling, (7) miRNA regulatory module detection, (8) miRNA-disease association, and (9) miRNA essentiality prediction. Taken together, we unpack, critically examine, and highlight the cutting-edge synergy of ML approaches and miRNA research so as to develop a dynamic and microlevel understanding of human health and diseases.

MicroRNA 研究中的机器学习策略:连接基因组与表型组
微RNA(miRNA)已成为基因表达调控的一个重要层面。本文介绍了从基因组到表型组的机器学习(ML)工具和方法在 miRNA 研究中的突出作用和现状。首先,我们强调 miRNA 功能分析的复杂性,从其生物发生模式到不同生物条件下的靶标多样性。因此,必须首先确定基因组的 miRNA 编码潜力,并了解其表达的调控机制。有了这些知识,就能对 miRNA 前体进行有效分类,并确定其成熟形式和各自的靶基因。其次,由于一种 miRNA 可以靶向多种 mRNA,反之亦然,因此另一个挑战是评估 miRNA 与 mRNA 的靶向相互作用网络。此外,长非编码 RNA(lncRNA)和环状 RNA(circRNA)也增加了这种复杂性。ML 已被用于解决这些高维数据层面的难题。本专家综述涵盖了 100 多种采用各种 ML 方法的工具,例如:(1)miRNA 启动子预测;(2)前体分类;(3)成熟 miRNA 预测;(4)miRNA 目标预测;(5)miRNA- lncRNA 和 miRNA-circRNA 相互作用;(6)miRNA-mRNA 表达谱分析;(7)miRNA 调控模块检测;(8)miRNA-疾病关联;以及(9)miRNA 必要性预测。总之,我们对 ML 方法和 miRNA 研究的前沿协同作用进行了解读、批判性审视和强调,从而对人类健康和疾病形成动态和微观层面的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信