{"title":"A comprehensive study on the identification and characterization of degradation products of lipoglycopeptide Dalbavancin using LC and LC-HRMS/MS","authors":"Sree Teja Paritala, Nitish Sharma, Ravi P. Shah","doi":"10.1002/psc.3608","DOIUrl":null,"url":null,"abstract":"<p>Dalbavancin is the second-generation approved semisynthetic lipoglycopeptide by the United States Food and Drug Administration (USFDA) for the treatment of acute bacterial skin and skin-structure infections. Unlike other lipoglycopeptides, the stability behavior of Dalbavancin was least explored, which is a prerequisite. The current study endeavors to elucidate the oxidative and hydrolytic stability behavior of Dalbavancin by exposing the drug to oxidative, acidic, and basic stress conditions. A simple liquid chromatography (LC) method was developed, where significant resolution between Dalbavancin, its homologs, and the generated degradation products was achieved. Seven degradation products were identified under acidic, basic, and oxidative stress conditions. Using liquid chromatography and high-resolution mass spectrometry (LC-HRMS), MS/MS studies, the generated degradation products were identified and characterized. Formation of isomeric degradation products was identified especially upon exposure to basic stress conditions. The mechanistic fragmentation pathway for the seven degradation products was established, and the chemical structure for the identified degradation products was elucidated. The results strongly suggest that Dalbavancin is highly susceptible to degradation under oxidative and hydrolytic stress conditions. This study provides insights into the hydrolytic and oxidative stability of Dalbavancin, which can be employed during drug development and discovery in synthesizing relatively stable analogs.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.3608","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dalbavancin is the second-generation approved semisynthetic lipoglycopeptide by the United States Food and Drug Administration (USFDA) for the treatment of acute bacterial skin and skin-structure infections. Unlike other lipoglycopeptides, the stability behavior of Dalbavancin was least explored, which is a prerequisite. The current study endeavors to elucidate the oxidative and hydrolytic stability behavior of Dalbavancin by exposing the drug to oxidative, acidic, and basic stress conditions. A simple liquid chromatography (LC) method was developed, where significant resolution between Dalbavancin, its homologs, and the generated degradation products was achieved. Seven degradation products were identified under acidic, basic, and oxidative stress conditions. Using liquid chromatography and high-resolution mass spectrometry (LC-HRMS), MS/MS studies, the generated degradation products were identified and characterized. Formation of isomeric degradation products was identified especially upon exposure to basic stress conditions. The mechanistic fragmentation pathway for the seven degradation products was established, and the chemical structure for the identified degradation products was elucidated. The results strongly suggest that Dalbavancin is highly susceptible to degradation under oxidative and hydrolytic stress conditions. This study provides insights into the hydrolytic and oxidative stability of Dalbavancin, which can be employed during drug development and discovery in synthesizing relatively stable analogs.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.