How spatial omics approaches can be used to map the biological impacts of stress in psychiatric disorders: a perspective, overview and technical guide.
{"title":"How spatial omics approaches can be used to map the biological impacts of stress in psychiatric disorders: a perspective, overview and technical guide.","authors":"Amber R Curry, Lezanne Ooi, Natalie Matosin","doi":"10.1080/10253890.2024.2351394","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to significant levels of stress and trauma throughout life is a leading risk factor for the development of major psychiatric disorders. Despite this, we do not have a comprehensive understanding of the mechanisms that explain how stress raises psychiatric disorder risk. Stress in humans is complex and produces variable molecular outcomes depending on the stress type, timing, and duration. Deciphering how stress increases disorder risk has consequently been challenging to address with the traditional single-target experimental approaches primarily utilized to date. Importantly, the molecular processes that occur following stress are not fully understood but are needed to find novel treatment targets. Sequencing-based omics technologies, allowing for an unbiased investigation of physiological changes induced by stress, are rapidly accelerating our knowledge of the molecular sequelae of stress at a single-cell resolution. Spatial multi-omics technologies are now also emerging, allowing for simultaneous analysis of functional molecular layers, from epigenome to proteome, with anatomical context. The technology has immense potential to transform our understanding of how disorders develop, which we believe will significantly propel our understanding of how specific risk factors, such as stress, contribute to disease course. Here, we provide our perspective of how we believe these technologies will transform our understanding of the neurobiology of stress, and also provided a technical guide to assist molecular psychiatry and stress researchers who wish to implement spatial omics approaches in their own research. Finally, we identify potential future directions using multi-omics technology in stress research.</p>","PeriodicalId":51173,"journal":{"name":"Stress-The International Journal on the Biology of Stress","volume":"27 1","pages":"2351394"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress-The International Journal on the Biology of Stress","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10253890.2024.2351394","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure to significant levels of stress and trauma throughout life is a leading risk factor for the development of major psychiatric disorders. Despite this, we do not have a comprehensive understanding of the mechanisms that explain how stress raises psychiatric disorder risk. Stress in humans is complex and produces variable molecular outcomes depending on the stress type, timing, and duration. Deciphering how stress increases disorder risk has consequently been challenging to address with the traditional single-target experimental approaches primarily utilized to date. Importantly, the molecular processes that occur following stress are not fully understood but are needed to find novel treatment targets. Sequencing-based omics technologies, allowing for an unbiased investigation of physiological changes induced by stress, are rapidly accelerating our knowledge of the molecular sequelae of stress at a single-cell resolution. Spatial multi-omics technologies are now also emerging, allowing for simultaneous analysis of functional molecular layers, from epigenome to proteome, with anatomical context. The technology has immense potential to transform our understanding of how disorders develop, which we believe will significantly propel our understanding of how specific risk factors, such as stress, contribute to disease course. Here, we provide our perspective of how we believe these technologies will transform our understanding of the neurobiology of stress, and also provided a technical guide to assist molecular psychiatry and stress researchers who wish to implement spatial omics approaches in their own research. Finally, we identify potential future directions using multi-omics technology in stress research.
期刊介绍:
The journal Stress aims to provide scientists involved in stress research with the possibility of reading a more integrated view of the field. Peer reviewed papers, invited reviews and short communications will deal with interdisciplinary aspects of stress in terms of: the mechanisms of stressful stimulation, including within and between individuals; the physiological and behavioural responses to stress, and their regulation, in both the short and long term; adaptive mechanisms, coping strategies and the pathological consequences of stress.
Stress will publish the latest developments in physiology, neurobiology, molecular biology, genetics research, immunology, and behavioural studies as they impact on the understanding of stress and its adverse consequences and their amelioration.
Specific approaches may include transgenic/knockout animals, developmental/programming studies, electrophysiology, histochemistry, neurochemistry, neuropharmacology, neuroanatomy, neuroimaging, endocrinology, autonomic physiology, immunology, chronic pain, ethological and other behavioural studies and clinical measures.