A potent new-scaffold androgen receptor antagonist discovered on the basis of a MIEC-SVM model.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Acta Pharmacologica Sinica Pub Date : 2024-09-01 Epub Date: 2024-05-15 DOI:10.1038/s41401-024-01284-x
Xin-Yue Wang, Xin Chai, Lu-Hu Shan, Xiao-Hong Xu, Lei Xu, Ting-Jun Hou, Hui-Yong Sun, Dan Li
{"title":"A potent new-scaffold androgen receptor antagonist discovered on the basis of a MIEC-SVM model.","authors":"Xin-Yue Wang, Xin Chai, Lu-Hu Shan, Xiao-Hong Xu, Lei Xu, Ting-Jun Hou, Hui-Yong Sun, Dan Li","doi":"10.1038/s41401-024-01284-x","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) is the second most prevalent malignancy among men worldwide. The aberrant activation of androgen receptor (AR) signaling has been recognized as a crucial oncogenic driver for PCa and AR antagonists are widely used in PCa therapy. To develop novel AR antagonist, a machine-learning MIEC-SVM model was established for the virtual screening and 51 candidates were selected and submitted for bioactivity evaluation. To our surprise, a new-scaffold AR antagonist C2 with comparable bioactivity with Enz was identified at the initial round of screening. C2 showed pronounced inhibition on the transcriptional function (IC<sub>50</sub> = 0.63 μM) and nuclear translocation of AR and significant antiproliferative and antimetastatic activity on PCa cell line of LNCaP. In addition, C2 exhibited a stronger ability to block the cell cycle of LNCaP than Enz at lower dose and superior AR specificity. Our study highlights the success of MIEC-SVM in discovering AR antagonists, and compound C2 presents a promising new scaffold for the development of AR-targeted therapeutics.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":"1978-1991"},"PeriodicalIF":6.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01284-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer (PCa) is the second most prevalent malignancy among men worldwide. The aberrant activation of androgen receptor (AR) signaling has been recognized as a crucial oncogenic driver for PCa and AR antagonists are widely used in PCa therapy. To develop novel AR antagonist, a machine-learning MIEC-SVM model was established for the virtual screening and 51 candidates were selected and submitted for bioactivity evaluation. To our surprise, a new-scaffold AR antagonist C2 with comparable bioactivity with Enz was identified at the initial round of screening. C2 showed pronounced inhibition on the transcriptional function (IC50 = 0.63 μM) and nuclear translocation of AR and significant antiproliferative and antimetastatic activity on PCa cell line of LNCaP. In addition, C2 exhibited a stronger ability to block the cell cycle of LNCaP than Enz at lower dose and superior AR specificity. Our study highlights the success of MIEC-SVM in discovering AR antagonists, and compound C2 presents a promising new scaffold for the development of AR-targeted therapeutics.

Abstract Image

基于 MIEC-SVM 模型发现的强效新支架雄激素受体拮抗剂。
前列腺癌(PCa)是全球男性发病率第二高的恶性肿瘤。雄激素受体(AR)信号的异常激活已被认为是PCa的关键致癌驱动因素,AR拮抗剂被广泛用于PCa的治疗。为了开发新型AR拮抗剂,我们建立了一个机器学习MIEC-SVM模型进行虚拟筛选,筛选出51个候选化合物并提交进行生物活性评估。出乎我们意料的是,在首轮筛选中,一种生物活性与 Enz 相当的新支架 AR 拮抗剂 C2 被发现。C2 对 AR 的转录功能(IC50 = 0.63 μM)和核转位有明显的抑制作用,对 PCa 细胞系 LNCaP 有显著的抗增殖和抗转移活性。此外,与 Enz 相比,C2 在较低剂量下阻断 LNCaP 细胞周期的能力更强,且 AR 特异性更强。我们的研究凸显了 MIEC-SVM 在发现 AR 拮抗剂方面的成功,化合物 C2 为开发 AR 靶向治疗药物提供了一个前景广阔的新支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信