{"title":"Automatic object detection for behavioural research using YOLOv8.","authors":"Frouke Hermens","doi":"10.3758/s13428-024-02420-5","DOIUrl":null,"url":null,"abstract":"<p><p>Observational studies of human behaviour often require the annotation of objects in video recordings. Automatic object detection has been facilitated strongly by the development of YOLO ('you only look once') and particularly by YOLOv8 from Ultralytics, which is easy to use. The present study examines the conditions required for accurate object detection with YOLOv8. The results show almost perfect object detection even when the model was trained on a small dataset (100 to 350 images). The detector, however, does not extrapolate well to the same object in other backgrounds. By training the detector on images from a variety of backgrounds, excellent object detection can be restored. YOLOv8 could be a game changer for behavioural research that requires object annotation in video recordings.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02420-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Observational studies of human behaviour often require the annotation of objects in video recordings. Automatic object detection has been facilitated strongly by the development of YOLO ('you only look once') and particularly by YOLOv8 from Ultralytics, which is easy to use. The present study examines the conditions required for accurate object detection with YOLOv8. The results show almost perfect object detection even when the model was trained on a small dataset (100 to 350 images). The detector, however, does not extrapolate well to the same object in other backgrounds. By training the detector on images from a variety of backgrounds, excellent object detection can be restored. YOLOv8 could be a game changer for behavioural research that requires object annotation in video recordings.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.