Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, Jiajia Dai
{"title":"A global monthly field of seawater pH over 3 decades: a machine learning approach","authors":"Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, Jiajia Dai","doi":"10.5194/essd-2024-151","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The continuous uptake of anthropogenic CO<sub>2</sub> by the ocean leads to ocean acidification, which is an ongoing threat to the marine ecosystem. The ocean acidification rate was globally documented in the surface ocean but limited below the surface. Here, we present a monthly four-dimensional 1°×1° gridded product of global seawater pH, derived from a machine learning algorithm trained on pH observations at total scale and in-situ temperature from the Global Ocean Data Analysis Project (GLODAP). The constructed pH product covers the years 1992–2020 and depths from the surface to 2 km on 41 levels. Three types of machine learning algorithms were used in the pH product construction, including self-organizing map neural networks for region dividing, a stepwise algorithm for predictor selection, and feed-forward neural networks (FFNN) for non-linear relationship regression. The performance of the machine learning algorithm was validated using real observations by a cross validation method, where four repeating iterations were carried out with 25 % varied observations for each evaluation and 75 % for training. The constructed pH product is evaluated through comparisons to time series observations and the GLODAP pH climatology. The overall root mean square error between the FFNN constructed pH and the GLODAP measurements is 0.028, ranging from 0.044 in the surface to 0.013 at 2000 m. The pH product is distributed through the data repository of the Marine Science Data Center of the Chinese Academy of Sciences at http://dx.doi.org/10.12157/IOCAS.20230720.001 (Zhong et al., 2023).","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-151","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The continuous uptake of anthropogenic CO2 by the ocean leads to ocean acidification, which is an ongoing threat to the marine ecosystem. The ocean acidification rate was globally documented in the surface ocean but limited below the surface. Here, we present a monthly four-dimensional 1°×1° gridded product of global seawater pH, derived from a machine learning algorithm trained on pH observations at total scale and in-situ temperature from the Global Ocean Data Analysis Project (GLODAP). The constructed pH product covers the years 1992–2020 and depths from the surface to 2 km on 41 levels. Three types of machine learning algorithms were used in the pH product construction, including self-organizing map neural networks for region dividing, a stepwise algorithm for predictor selection, and feed-forward neural networks (FFNN) for non-linear relationship regression. The performance of the machine learning algorithm was validated using real observations by a cross validation method, where four repeating iterations were carried out with 25 % varied observations for each evaluation and 75 % for training. The constructed pH product is evaluated through comparisons to time series observations and the GLODAP pH climatology. The overall root mean square error between the FFNN constructed pH and the GLODAP measurements is 0.028, ranging from 0.044 in the surface to 0.013 at 2000 m. The pH product is distributed through the data repository of the Marine Science Data Center of the Chinese Academy of Sciences at http://dx.doi.org/10.12157/IOCAS.20230720.001 (Zhong et al., 2023).
Earth System Science DataGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍:
Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.