A global monthly field of seawater pH over 3 decades: a machine learning approach

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, Jiajia Dai
{"title":"A global monthly field of seawater pH over 3 decades: a machine learning approach","authors":"Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, Jiajia Dai","doi":"10.5194/essd-2024-151","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The continuous uptake of anthropogenic CO<sub>2</sub> by the ocean leads to ocean acidification, which is an ongoing threat to the marine ecosystem. The ocean acidification rate was globally documented in the surface ocean but limited below the surface. Here, we present a monthly four-dimensional 1°×1° gridded product of global seawater pH, derived from a machine learning algorithm trained on pH observations at total scale and in-situ temperature from the Global Ocean Data Analysis Project (GLODAP). The constructed pH product covers the years 1992–2020 and depths from the surface to 2 km on 41 levels. Three types of machine learning algorithms were used in the pH product construction, including self-organizing map neural networks for region dividing, a stepwise algorithm for predictor selection, and feed-forward neural networks (FFNN) for non-linear relationship regression. The performance of the machine learning algorithm was validated using real observations by a cross validation method, where four repeating iterations were carried out with 25 % varied observations for each evaluation and 75 % for training. The constructed pH product is evaluated through comparisons to time series observations and the GLODAP pH climatology. The overall root mean square error between the FFNN constructed pH and the GLODAP measurements is 0.028, ranging from 0.044 in the surface to 0.013 at 2000 m. The pH product is distributed through the data repository of the Marine Science Data Center of the Chinese Academy of Sciences at http://dx.doi.org/10.12157/IOCAS.20230720.001 (Zhong et al., 2023).","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-151","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The continuous uptake of anthropogenic CO2 by the ocean leads to ocean acidification, which is an ongoing threat to the marine ecosystem. The ocean acidification rate was globally documented in the surface ocean but limited below the surface. Here, we present a monthly four-dimensional 1°×1° gridded product of global seawater pH, derived from a machine learning algorithm trained on pH observations at total scale and in-situ temperature from the Global Ocean Data Analysis Project (GLODAP). The constructed pH product covers the years 1992–2020 and depths from the surface to 2 km on 41 levels. Three types of machine learning algorithms were used in the pH product construction, including self-organizing map neural networks for region dividing, a stepwise algorithm for predictor selection, and feed-forward neural networks (FFNN) for non-linear relationship regression. The performance of the machine learning algorithm was validated using real observations by a cross validation method, where four repeating iterations were carried out with 25 % varied observations for each evaluation and 75 % for training. The constructed pH product is evaluated through comparisons to time series observations and the GLODAP pH climatology. The overall root mean square error between the FFNN constructed pH and the GLODAP measurements is 0.028, ranging from 0.044 in the surface to 0.013 at 2000 m. The pH product is distributed through the data repository of the Marine Science Data Center of the Chinese Academy of Sciences at http://dx.doi.org/10.12157/IOCAS.20230720.001 (Zhong et al., 2023).
三十年来海水 pH 值的全球月度领域:一种机器学习方法
摘要海洋不断吸收人为二氧化碳导致海洋酸化,对海洋生态系统构成持续威胁。海洋酸化率在全球表层海洋都有记录,但在表层以下却很有限。在这里,我们展示了全球海水pH值的月度四维1°×1°网格产品,该产品是根据全球海洋数据分析项目(GLODAP)的总尺度pH值观测数据和原位温度训练的机器学习算法得出的。构建的 pH 值产品涵盖 1992-2020 年,深度从海面到 2 公里,共 41 层。在构建 pH 产品时使用了三种机器学习算法,包括用于区域划分的自组织图神经网络、用于预测因子选择的逐步算法和用于非线性关系回归的前馈神经网络(FFNN)。机器学习算法的性能通过交叉验证法使用真实观测数据进行了验证,即进行四次重复迭代,每次评估使用 25% 的不同观测数据,训练使用 75% 的不同观测数据。通过与时间序列观测数据和 GLODAP pH 气候学数据的比较,对构建的 pH 产品进行了评估。FFNN 构建的 pH 值与 GLODAP 测量值之间的总体均方根误差为 0.028,从地表的 0.044 到 2000 米处的 0.013 不等。该 pH 值产品通过中国科学院海洋科学数据中心的数据存储库发布,网址为 http://dx.doi.org/10.12157/IOCAS.20230720.001(Zhong 等,2023 年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信