A posteriori error estimates for the Richards equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
K. Mitra, M. Vohralík
{"title":"A posteriori error estimates for the Richards equation","authors":"K. Mitra, M. Vohralík","doi":"10.1090/mcom/3932","DOIUrl":null,"url":null,"abstract":"<p>The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection–reaction–diffusion equation that exhibits both parabolic–hyperbolic and parabolic–elliptic kind of degeneracies. In this study, we provide reliable, fully computable, and locally space–time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1 Baseline left-parenthesis upper H Superscript negative 1 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^1(H^{-1})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared left-parenthesis upper L squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^2(L^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared left-parenthesis upper H Superscript 1 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^2(H^1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space–time efficiency error bounds are then obtained in a standard <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1 Baseline left-parenthesis upper H Superscript negative 1 Baseline right-parenthesis intersection upper L squared left-parenthesis upper H Superscript 1 Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">H^1(H^{-1})\\cap L^2(H^1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm. The reliability and efficiency norms employed coincide when there is no nonlinearity. Moreover, error contributors such as space discretization, time discretization, quadrature, linearization, and data oscillation are identified and separated. The estimates are also valid in a setting where iterative linearization with inexact solvers is considered. Numerical tests are conducted for nondegenerate and degenerate cases having exact solutions, as well as for a realistic case and a benchmark case. It is shown that the estimators correctly identify the errors up to a factor of the order of unity.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection–reaction–diffusion equation that exhibits both parabolic–hyperbolic and parabolic–elliptic kind of degeneracies. In this study, we provide reliable, fully computable, and locally space–time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated H 1 ( H 1 ) H^1(H^{-1}) , L 2 ( L 2 ) L^2(L^2) , and the L 2 ( H 1 ) L^2(H^1) errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space–time efficiency error bounds are then obtained in a standard H 1 ( H 1 ) L 2 ( H 1 ) H^1(H^{-1})\cap L^2(H^1) norm. The reliability and efficiency norms employed coincide when there is no nonlinearity. Moreover, error contributors such as space discretization, time discretization, quadrature, linearization, and data oscillation are identified and separated. The estimates are also valid in a setting where iterative linearization with inexact solvers is considered. Numerical tests are conducted for nondegenerate and degenerate cases having exact solutions, as well as for a realistic case and a benchmark case. It is shown that the estimators correctly identify the errors up to a factor of the order of unity.

理查兹方程的后验误差估计值
理查兹方程常用于模拟水和空气在土壤中的流动,是多孔介质中多相流的关健方程。它是一个非线性平流-反应-扩散方程,表现出抛物线-双曲和抛物线-椭圆两种退行性。在本研究中,我们为完全退化的理查兹方程的数值近似提供了可靠、完全可计算和局部时空高效的后验误差边界。为了显示全局可靠性,我们为时间积分的 H 1 ( H - 1 ) H^1(H^{-1}) 、L 2 ( L 2 ) L^2(L^2) 和 L 2 ( H 1 ) L^2(H^1) 误差分别导出了非局部时间误差估计。最后一个误差采用了最大原则和退化估计器。然后,在标准的 H 1 ( H - 1 ) ∩ L 2 ( H 1 ) H^1(H^{-1})\cap L^2(H^1) 规范中得到全局和局部时空效率误差边界。当不存在非线性时,所采用的可靠性规范和效率规范是一致的。此外,还识别并区分了空间离散化、时间离散化、正交、线性化和数据振荡等误差因素。这些估计值在考虑使用非精确求解器进行迭代线性化时也是有效的。对具有精确解的非退化和退化情况,以及现实情况和基准情况进行了数值测试。结果表明,估计器能正确识别误差,误差最大可达 1 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信