{"title":"Optimal analysis of finite element methods for the stochastic Stokes equations","authors":"Buyang Li, Shu Ma, Weiwei Sun","doi":"10.1090/mcom/3972","DOIUrl":null,"url":null,"abstract":"<p>Numerical analysis for the stochastic Stokes equations is still challenging even though it has been well done for the corresponding deterministic equations. In particular, the pre-existing error estimates of finite element methods for the stochastic Stokes equations in the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript normal infinity Baseline left-parenthesis 0 comma upper T semicolon upper L squared left-parenthesis normal upper Omega semicolon upper L squared right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^\\infty (0, T; L^2(\\Omega ; L^2))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm all suffer from the order reduction with respect to the spatial discretizations. The best convergence result obtained for these fully discrete schemes is only half-order in time and first-order in space, which is not optimal in space in the traditional sense. The objective of this article is to establish strong convergence of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript 1 slash 2 Baseline plus h squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^{1/2}+ h^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript normal infinity Baseline left-parenthesis 0 comma upper T semicolon upper L squared left-parenthesis normal upper Omega semicolon upper L squared right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^\\infty (0, T; L^2(\\Omega ; L^2))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm for approximating the velocity, and strong convergence of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis tau Superscript 1 slash 2 Baseline plus h right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>τ</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:mi>h</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\tau ^{1/2}+ h)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript normal infinity Baseline left-parenthesis 0 comma upper T semicolon upper L squared left-parenthesis normal upper Omega semicolon upper L squared right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"normal\">Ω</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^{\\infty }(0, T;L^2(\\Omega ;L^2))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm for approximating the time integral of pressure, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\"application/x-tex\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the temporal step size and spatial mesh size, respectively. The error estimates are of optimal order for the spatial discretization considered in this article (with MINI element), and consistent with the numerical experiments. The analysis is based on the fully discrete Stokes semigroup technique and the corresponding new estimates.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"66 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3972","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical analysis for the stochastic Stokes equations is still challenging even though it has been well done for the corresponding deterministic equations. In particular, the pre-existing error estimates of finite element methods for the stochastic Stokes equations in the L∞(0,T;L2(Ω;L2))L^\infty (0, T; L^2(\Omega ; L^2)) norm all suffer from the order reduction with respect to the spatial discretizations. The best convergence result obtained for these fully discrete schemes is only half-order in time and first-order in space, which is not optimal in space in the traditional sense. The objective of this article is to establish strong convergence of O(τ1/2+h2)O(\tau ^{1/2}+ h^2) in the L∞(0,T;L2(Ω;L2))L^\infty (0, T; L^2(\Omega ; L^2)) norm for approximating the velocity, and strong convergence of O(τ1/2+h)O(\tau ^{1/2}+ h) in the L∞(0,T;L2(Ω;L2))L^{\infty }(0, T;L^2(\Omega ;L^2)) norm for approximating the time integral of pressure, where τ\tau and hh denote the temporal step size and spatial mesh size, respectively. The error estimates are of optimal order for the spatial discretization considered in this article (with MINI element), and consistent with the numerical experiments. The analysis is based on the fully discrete Stokes semigroup technique and the corresponding new estimates.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.