Uniform accuracy of implicit-explicit Runge-Kutta (IMEX-RK) schemes for hyperbolic systems with relaxation

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Jingwei Hu, Ruiwen Shu
{"title":"Uniform accuracy of implicit-explicit Runge-Kutta (IMEX-RK) schemes for hyperbolic systems with relaxation","authors":"Jingwei Hu, Ruiwen Shu","doi":"10.1090/mcom/3967","DOIUrl":null,"url":null,"abstract":"<p>Implicit-explicit Runge-Kutta (IMEX-RK) schemes are popular methods to treat multiscale equations that contain a stiff part and a non-stiff part, where the stiff part is characterized by a small parameter <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ε<!-- ε --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this work, we prove rigorously the uniform stability and uniform accuracy of a class of IMEX-RK schemes for a linear hyperbolic system with stiff relaxation. The result we obtain is optimal in the sense that it holds regardless of the value of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ε<!-- ε --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the order of accuracy is the same as the design order of the original scheme, i.e., there is no order reduction.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"32 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3967","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Implicit-explicit Runge-Kutta (IMEX-RK) schemes are popular methods to treat multiscale equations that contain a stiff part and a non-stiff part, where the stiff part is characterized by a small parameter ε \varepsilon . In this work, we prove rigorously the uniform stability and uniform accuracy of a class of IMEX-RK schemes for a linear hyperbolic system with stiff relaxation. The result we obtain is optimal in the sense that it holds regardless of the value of ε \varepsilon and the order of accuracy is the same as the design order of the original scheme, i.e., there is no order reduction.

含松弛双曲系统的隐式-显式 Runge-Kutta (IMEX-RK) 方案的均匀精度
隐式-显式 Runge-Kutta (IMEX-RK)方案是处理包含刚性部分和非刚性部分的多尺度方程的常用方法,其中刚性部分由一个小参数 ε \varepsilon 表征。在这项工作中,我们严格证明了一类 IMEX-RK 方案对具有刚性松弛的线性双曲系统的均匀稳定性和均匀精度。我们得到的结果是最优的,因为无论 ε \varepsilon 的值如何,它都是成立的,而且精度阶数与原始方案的设计阶数相同,即没有阶数降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信