A posteriori error analysis of hybrid higher order methods for the elliptic obstacle problem

Kamana Porwal, Ritesh Singla
{"title":"A posteriori error analysis of hybrid higher order methods for the elliptic obstacle problem","authors":"Kamana Porwal, Ritesh Singla","doi":"arxiv-2405.04961","DOIUrl":null,"url":null,"abstract":"In this article, a posteriori error analysis of the elliptic obstacle problem\nis addressed using hybrid high-order methods. The method involve cell unknowns\nrepresented by degree-$r$ polynomials and face unknowns represented by\ndegree-$s$ polynomials, where $r=0$ and $s$ is either $0$ or $1$. The discrete\nobstacle constraints are specifically applied to the cell unknowns. The\nanalysis hinges on the construction of a suitable Lagrange multiplier, a\nresidual functional and a linear averaging map. The reliability and the\nefficiency of the proposed a posteriori error estimator is discussed, and the\nstudy is concluded by numerical experiments supporting the theoretical results.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a posteriori error analysis of the elliptic obstacle problem is addressed using hybrid high-order methods. The method involve cell unknowns represented by degree-$r$ polynomials and face unknowns represented by degree-$s$ polynomials, where $r=0$ and $s$ is either $0$ or $1$. The discrete obstacle constraints are specifically applied to the cell unknowns. The analysis hinges on the construction of a suitable Lagrange multiplier, a residual functional and a linear averaging map. The reliability and the efficiency of the proposed a posteriori error estimator is discussed, and the study is concluded by numerical experiments supporting the theoretical results.
椭圆障碍问题混合高阶方法的后验误差分析
本文采用混合高阶方法对椭圆障碍问题进行后验误差分析。该方法涉及由$r$度多项式表示的单元未知数和由$s$度多项式表示的面未知数,其中$r=0$,$s$为$0$或$1$。离散障碍约束特别适用于单元未知数。分析的关键在于构建一个合适的拉格朗日乘法器、一个辅助函数和一个线性平均图。讨论了所提出的后验误差估计器的可靠性和效率,最后通过数值实验支持了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信