Parameterized Approximation Algorithms and Lower Bounds for k-Center Clustering and Variants

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Sayan Bandyapadhyay, Zachary Friggstad, Ramin Mousavi
{"title":"Parameterized Approximation Algorithms and Lower Bounds for k-Center Clustering and Variants","authors":"Sayan Bandyapadhyay,&nbsp;Zachary Friggstad,&nbsp;Ramin Mousavi","doi":"10.1007/s00453-024-01236-1","DOIUrl":null,"url":null,"abstract":"<div><p><i>k</i>-center is one of the most popular clustering models. While it admits a simple 2-approximation in polynomial time in general metrics, the Euclidean version is NP-hard to approximate within a factor of 1.82, even in the plane, if one insists the dependence on <i>k</i> in the running time be polynomial. Without this restriction, a classic algorithm by Agarwal and Procopiuc [Algorithmica 2002] yields an <span>\\(O(n\\log k)+(1/\\epsilon )^{O(2^dk^{1-1/d}\\log k)}\\)</span>-time <span>\\((1+\\epsilon )\\)</span>-approximation for Euclidean <i>k</i>-center, where <i>d</i> is the dimension. We show for a closely related problem, <i>k</i>-supplier, the double-exponential dependence on dimension is unavoidable if one hopes to have a sub-linear dependence on <i>k</i> in the exponent. We also derive similar algorithmic results to the ones by Agarwal and Procopiuc for both <i>k</i>-center and <i>k</i>-supplier. We use a relatively new tool, called Voronoi separator, which makes our algorithms and analyses substantially simpler. Furthermore we consider a well-studied generalization of <i>k</i>-center, called Non-uniform <i>k</i>-center (NUkC), where we allow different radii clusters. NUkC is NP-hard to approximate within any factor, even in the Euclidean case. We design a <span>\\(2^{O(k\\log k)}n^2\\)</span> time 3-approximation for NUkC in general metrics, and a <span>\\(2^{O((k\\log k)/\\epsilon )}dn\\)</span> time <span>\\((1+\\epsilon )\\)</span>-approximation for Euclidean NUkC. The latter time bound matches the bound for <i>k</i>-center.\n</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 8","pages":"2557 - 2574"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01236-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

k-center is one of the most popular clustering models. While it admits a simple 2-approximation in polynomial time in general metrics, the Euclidean version is NP-hard to approximate within a factor of 1.82, even in the plane, if one insists the dependence on k in the running time be polynomial. Without this restriction, a classic algorithm by Agarwal and Procopiuc [Algorithmica 2002] yields an \(O(n\log k)+(1/\epsilon )^{O(2^dk^{1-1/d}\log k)}\)-time \((1+\epsilon )\)-approximation for Euclidean k-center, where d is the dimension. We show for a closely related problem, k-supplier, the double-exponential dependence on dimension is unavoidable if one hopes to have a sub-linear dependence on k in the exponent. We also derive similar algorithmic results to the ones by Agarwal and Procopiuc for both k-center and k-supplier. We use a relatively new tool, called Voronoi separator, which makes our algorithms and analyses substantially simpler. Furthermore we consider a well-studied generalization of k-center, called Non-uniform k-center (NUkC), where we allow different radii clusters. NUkC is NP-hard to approximate within any factor, even in the Euclidean case. We design a \(2^{O(k\log k)}n^2\) time 3-approximation for NUkC in general metrics, and a \(2^{O((k\log k)/\epsilon )}dn\) time \((1+\epsilon )\)-approximation for Euclidean NUkC. The latter time bound matches the bound for k-center.

Abstract Image

Abstract Image

k 中心聚类及其变体的参数化近似算法和下限
k 中心是最流行的聚类模型之一。虽然在一般度量中,它可以在多项式时间内进行简单的 2 次近似,但如果坚持运行时间对 k 的依赖是多项式的,那么即使在平面上,欧几里得版本也很难在 1.82 倍的范围内进行近似。如果没有这个限制,阿加瓦尔和普罗科皮乌克(Agarwal and Procopiuc)[Algorithmica 2002]的经典算法就会产生一个(O(n\log k)+(1/\epsilon )^{O(2^dk^{1-1/d}\log k)}\ )-时间((1+\epsilon )\)-欧几里得k-中心的近似,其中d是维数。我们证明,对于一个密切相关的问题,即 k-供应商问题,如果希望指数与 k 成亚线性关系,那么维度的双指数依赖是不可避免的。我们还推导出了与 Agarwal 和 Procopiuc 类似的 K-中心和 K-供应商算法结果。我们使用了一种相对较新的工具,即 Voronoi 分离器,它大大简化了我们的算法和分析。此外,我们还考虑了一种经过充分研究的 k 中心广义,即非均匀 k 中心(NUkC),在这种情况下,我们允许不同半径的簇。即使是在欧几里得情况下,NUkC 也很难在任何系数内逼近。我们为一般度量中的NUkC设计了一个(2^{O(k\log k)}n^2\) 时间的3次近似,并为欧几里得NUkC设计了一个(2^{O((k\log k)/\epsilon )}dn\) 时间的((1+\epsilon )\)近似。后者的时间约束与 k 中心的约束相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信