Normalized Ground States for a Fractional Choquard System in $$\mathbb {R}$$

Wenjing Chen, Zexi Wang
{"title":"Normalized Ground States for a Fractional Choquard System in $$\\mathbb {R}$$","authors":"Wenjing Chen, Zexi Wang","doi":"10.1007/s12220-024-01629-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the following fractional Choquard system </p><span>$$\\begin{aligned} \\begin{aligned} \\left\\{ \\begin{array}{ll} (-\\Delta )^{1/2}u=\\lambda _1 u+(I_\\mu *F(u,v))F_u (u,v), \\quad \\text{ in }\\ \\ \\mathbb {R}, \\\\ (-\\Delta )^{1/2}v=\\lambda _2 v+(I_\\mu *F(u,v)) F_v(u,v), \\quad \\text{ in }\\ \\ \\mathbb {R}, \\\\ \\displaystyle \\int _{\\mathbb {R}}|u|^2\\textrm{d}x=a^2,\\quad \\displaystyle \\int _{\\mathbb {R}}|v|^2\\textrm{d}x=b^2,\\quad u,v\\in H^{1/2}(\\mathbb {R}), \\end{array} \\right. \\end{aligned} \\end{aligned}$$</span><p>where <span>\\((-\\Delta )^{1/2}\\)</span> denotes the 1/2-Laplacian operator, <span>\\(a,b&gt;0\\)</span> are prescribed, <span>\\(\\lambda _1,\\lambda _2\\in \\mathbb {R}\\)</span>, <span>\\(I_\\mu (x)=\\frac{{1}}{{|x|^\\mu }}\\)</span> with <span>\\(\\mu \\in (0,1)\\)</span>, <span>\\(F_u,F_v\\)</span> are partial derivatives of <i>F</i> and <span>\\(F_u,F_v\\)</span> have exponential critical growth in <span>\\(\\mathbb {R}\\)</span>. By using a minimax principle and analyzing the monotonicity of the ground state energy with respect to the prescribed masses, we obtain at least one normalized ground state solution for the above system.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01629-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the following fractional Choquard system

$$\begin{aligned} \begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{1/2}u=\lambda _1 u+(I_\mu *F(u,v))F_u (u,v), \quad \text{ in }\ \ \mathbb {R}, \\ (-\Delta )^{1/2}v=\lambda _2 v+(I_\mu *F(u,v)) F_v(u,v), \quad \text{ in }\ \ \mathbb {R}, \\ \displaystyle \int _{\mathbb {R}}|u|^2\textrm{d}x=a^2,\quad \displaystyle \int _{\mathbb {R}}|v|^2\textrm{d}x=b^2,\quad u,v\in H^{1/2}(\mathbb {R}), \end{array} \right. \end{aligned} \end{aligned}$$

where \((-\Delta )^{1/2}\) denotes the 1/2-Laplacian operator, \(a,b>0\) are prescribed, \(\lambda _1,\lambda _2\in \mathbb {R}\), \(I_\mu (x)=\frac{{1}}{{|x|^\mu }}\) with \(\mu \in (0,1)\), \(F_u,F_v\) are partial derivatives of F and \(F_u,F_v\) have exponential critical growth in \(\mathbb {R}\). By using a minimax principle and analyzing the monotonicity of the ground state energy with respect to the prescribed masses, we obtain at least one normalized ground state solution for the above system.

$$\mathbb {R}$$ 中分数 Choquard 系统的归一化基态
本文研究以下分数 Choquard 系统 $$\begin{aligned}\开始\(-\Delta )^{1/2}u=\lambda _1 u+(I_\mu *F(u,v))F_u (u,v), \quad \text{ in }\\mathbb {R}, \ (-\Delta )^{1/2}v=\lambda _2 v+(I_\mu *F(u,v))F_v(u,v), \quad \text{ in }\\ \mathbb {R}, \\displaystyle int _{\mathbb {R}}|u|^2\textrm{d}x=a^2、\quad \displaystyle \int _{mathbb {R}}|v|^2\textrm{d}x=b^2,\quad u,v\in H^{1/2}(\mathbb {R}),\end{array}.\right.\end{aligned}\end{aligned}$$其中 \((-\Delta )^{1/2}\) 表示 1/2 拉普拉斯算子,\(a,b>;0)都是规定的,((lambda _1,lambda _2在 (mathbb {R})中),(I_\mu (x)=\frac{{1}}{{{x|^\mu }}) with (\mu 在 (0、1)),\(F_u,F_v\)是 F 的偏导数,并且\(F_u,F_v\)在\(\mathbb {R}\)中有指数临界增长。通过使用最小原理和分析基态能量相对于规定质量的单调性,我们得到了上述系统的至少一个归一化基态解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信