On discrete ground states of rotating Bose–Einstein condensates

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Patrick Henning, Mahima Yadav
{"title":"On discrete ground states of rotating Bose–Einstein condensates","authors":"Patrick Henning, Mahima Yadav","doi":"10.1090/mcom/3962","DOIUrl":null,"url":null,"abstract":"<p>The ground states of Bose–Einstein condensates in a rotating frame can be described as constrained minimizers of the Gross–Pitaevskii energy functional with an angular momentum term. In this paper we consider the corresponding discrete minimization problem in Lagrange finite element spaces of arbitrary polynomial order and we investigate the approximation properties of discrete ground states. In particular, we prove a priori error estimates of optimal order in the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>- and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm, as well as for the ground state energy and the corresponding chemical potential. A central issue in the analysis of the problem is the missing uniqueness of ground states, which is mainly caused by the invariance of the energy functional under complex phase shifts. Our error analysis is therefore based on an Euler–Lagrange functional that we restrict to certain tangent spaces in which we have local uniqueness of ground states. This gives rise to an error decomposition that is ultimately used to derive the desired a priori error estimates. We also present numerical experiments to illustrate various aspects of the problem structure.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The ground states of Bose–Einstein condensates in a rotating frame can be described as constrained minimizers of the Gross–Pitaevskii energy functional with an angular momentum term. In this paper we consider the corresponding discrete minimization problem in Lagrange finite element spaces of arbitrary polynomial order and we investigate the approximation properties of discrete ground states. In particular, we prove a priori error estimates of optimal order in the L 2 L^2 - and H 1 H^1 -norm, as well as for the ground state energy and the corresponding chemical potential. A central issue in the analysis of the problem is the missing uniqueness of ground states, which is mainly caused by the invariance of the energy functional under complex phase shifts. Our error analysis is therefore based on an Euler–Lagrange functional that we restrict to certain tangent spaces in which we have local uniqueness of ground states. This gives rise to an error decomposition that is ultimately used to derive the desired a priori error estimates. We also present numerical experiments to illustrate various aspects of the problem structure.

关于旋转玻色-爱因斯坦凝聚态的离散基态
旋转框架中玻色-爱因斯坦凝聚态的基态可以描述为带有角动量项的格罗斯-皮塔耶夫斯基能量函数的约束最小化。本文考虑了任意多项式阶拉格朗日有限元空间中相应的离散最小化问题,并研究了离散基态的近似特性。特别是,我们证明了 L 2 L^2 - 和 H 1 H^1 - 规范中最优阶的先验误差估计,以及基态能量和相应化学势的先验误差估计。问题分析中的一个核心问题是基态唯一性的缺失,这主要是由于复相移下能量函数的不变性造成的。因此,我们的误差分析基于欧拉-拉格朗日函数,并将其限制在具有局部唯一基态的特定切空间。这就产生了误差分解,最终用于推导所需的先验误差估计。我们还通过数值实验来说明问题结构的各个方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信