Wavelet series expansion in Hardy spaces with approximate duals

IF 0.6 3区 数学 Q3 MATHEMATICS
Y. Hur, H. Lim
{"title":"Wavelet series expansion in Hardy spaces with approximate duals","authors":"Y. Hur,&nbsp;H. Lim","doi":"10.1007/s10476-024-00022-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we provide sufficient conditions for the functions \n<span>\\( \\psi \\)</span> and <span>\\( \\phi \\)</span> to be the approximate duals in the Hardy space <span>\\(H^p(\\mathbb{R})\\)</span> for all <span>\\( 0&lt;p\\le 1 \\)</span>.\nBased on these conditions, we obtain the wavelet series expansion in the Hardy\nspace <span>\\(H^p(\\mathbb{R})\\)</span> with the approximate duals. The important properties of our approach\ninclude the following: (i) our results work for any <span>\\( 0&lt;p \\leq 1 \\)</span>; (ii) we do not\nassume that the functions <span>\\( \\psi \\)</span> and <span>\\( \\phi \\)</span> are exact duals; (iii) we provide a tractable\nbound for the operator norm of the associated wavelet frame operator so that it\nis possible to check the suitability of the functions <span>\\( \\psi \\)</span> and <span>\\( \\phi \\)</span>.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00022-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we provide sufficient conditions for the functions \( \psi \) and \( \phi \) to be the approximate duals in the Hardy space \(H^p(\mathbb{R})\) for all \( 0<p\le 1 \). Based on these conditions, we obtain the wavelet series expansion in the Hardy space \(H^p(\mathbb{R})\) with the approximate duals. The important properties of our approach include the following: (i) our results work for any \( 0<p \leq 1 \); (ii) we do not assume that the functions \( \psi \) and \( \phi \) are exact duals; (iii) we provide a tractable bound for the operator norm of the associated wavelet frame operator so that it is possible to check the suitability of the functions \( \psi \) and \( \phi \).

具有近似对偶的哈代空间中的小波级数展开
在本文中,我们提供了函数( \psi \)和函数( \phi \)在哈代空间(H^p(\mathbb{R})\)中对于所有( 0<p\le 1 \)都是近似对偶的充分条件。基于这些条件,我们得到了在哈代空间(H^p(\mathbb{R})\)中具有近似对偶的小波级数展开。我们的方法具有以下重要特性:(i) 我们的结果适用于任何 \( 0<p \leq 1 \);(ii) 我们并不假定函数 \( \psi \)和 \( \phi \)是精确的对偶;(iii) 我们为相关小波帧算子的算子规范提供了一个可操作的边界,这样就可以检查函数 \( \psi \)和 \( \phi \)的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信