{"title":"Quantum q-series and mock theta functions","authors":"Amanda Folsom, David Metacarpa","doi":"10.1007/s40687-024-00447-w","DOIUrl":null,"url":null,"abstract":"<p>Our results investigate mock theta functions and quantum modular forms via quantum <i>q</i>-series identities. After Lovejoy, quantum <i>q</i>-series identities are such that they do not hold as an equality between power series inside the unit disc in the classical sense, but do hold at dense sets of roots of unity on the boundary. We establish several general (multivariable) quantum <i>q</i>-series identities and apply them to various settings involving (universal) mock theta functions. As a consequence, we surprisingly show that limiting, finite, universal mock theta functions at roots of unity for which their infinite counterparts do not converge are quantum modular. Moreover, we show that these finite limiting universal mock theta functions play key roles in (generalized) Ramanujan radial limits. A further corollary of our work reveals that the finite Kontsevich–Zagier series is a kind of “universal quantum mock theta function,” in that it may be used to evaluate odd-order Ramanujan mock theta functions at roots of unity. (We also offer a similar result for even-order mock theta functions.) Finally, to complement the notion of a quantum <i>q</i>-series identity and the results of this paper, we also define what we call an “antiquantum <i>q</i>-series identity’ and offer motivating general results with applications to third-order mock theta functions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00447-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Our results investigate mock theta functions and quantum modular forms via quantum q-series identities. After Lovejoy, quantum q-series identities are such that they do not hold as an equality between power series inside the unit disc in the classical sense, but do hold at dense sets of roots of unity on the boundary. We establish several general (multivariable) quantum q-series identities and apply them to various settings involving (universal) mock theta functions. As a consequence, we surprisingly show that limiting, finite, universal mock theta functions at roots of unity for which their infinite counterparts do not converge are quantum modular. Moreover, we show that these finite limiting universal mock theta functions play key roles in (generalized) Ramanujan radial limits. A further corollary of our work reveals that the finite Kontsevich–Zagier series is a kind of “universal quantum mock theta function,” in that it may be used to evaluate odd-order Ramanujan mock theta functions at roots of unity. (We also offer a similar result for even-order mock theta functions.) Finally, to complement the notion of a quantum q-series identity and the results of this paper, we also define what we call an “antiquantum q-series identity’ and offer motivating general results with applications to third-order mock theta functions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.