A Data-Driven Scale-Invariant Weighted Compact Nonlinear Scheme for Hyperbolic Conservation Laws

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Zixuan Zhang,Yidao Dong,Yuanyang Zou,Hao Zhang, Xiaogang Deng
{"title":"A Data-Driven Scale-Invariant Weighted Compact Nonlinear Scheme for Hyperbolic Conservation Laws","authors":"Zixuan Zhang,Yidao Dong,Yuanyang Zou,Hao Zhang, Xiaogang Deng","doi":"10.4208/cicp.oa-2023-0162","DOIUrl":null,"url":null,"abstract":"With continuous developments in various techniques, machine learning is\nbecoming increasingly viable and promising in the field of fluid mechanics. In this\narticle, we present a machine learning approach for enhancing the resolution and robustness of the weighted compact nonlinear scheme (WCNS). We employ a neural\nnetwork as a weighting function in the WCNS scheme and follow a data-driven approach to train this neural network. Neural networks can learn a new smoothness\nmeasure and calculate a weight function inherently. To facilitate the machine learning task and train with fewer data, we integrate the prior knowledge into the learning\nprocess, such as a Galilean invariant input layer and CNS polynomials. The normalization in the Delta layer (the so-called Delta layer is used to calculate input features)\nensures that the WCNS3-NN schemes achieve a scale-invariant property (Si-property)\nwith an arbitrary scale of a function, and an essentially non-oscillatory approximation of a discontinuous function (ENO-property). The Si-property and ENO-property\nof the data-driven WCNS schemes are validated numerically. Several one- and two-dimensional benchmark examples, including strong shocks and shock-density wave\ninteractions, are presented to demonstrate the advantages of the proposed method.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"27 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0162","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With continuous developments in various techniques, machine learning is becoming increasingly viable and promising in the field of fluid mechanics. In this article, we present a machine learning approach for enhancing the resolution and robustness of the weighted compact nonlinear scheme (WCNS). We employ a neural network as a weighting function in the WCNS scheme and follow a data-driven approach to train this neural network. Neural networks can learn a new smoothness measure and calculate a weight function inherently. To facilitate the machine learning task and train with fewer data, we integrate the prior knowledge into the learning process, such as a Galilean invariant input layer and CNS polynomials. The normalization in the Delta layer (the so-called Delta layer is used to calculate input features) ensures that the WCNS3-NN schemes achieve a scale-invariant property (Si-property) with an arbitrary scale of a function, and an essentially non-oscillatory approximation of a discontinuous function (ENO-property). The Si-property and ENO-property of the data-driven WCNS schemes are validated numerically. Several one- and two-dimensional benchmark examples, including strong shocks and shock-density wave interactions, are presented to demonstrate the advantages of the proposed method.
双曲守恒定律的数据驱动尺度不变加权紧凑非线性方案
随着各种技术的不断发展,机器学习在流体力学领域的可行性和前景越来越广阔。在本文中,我们提出了一种机器学习方法,用于提高加权紧凑非线性方案(WCNS)的分辨率和鲁棒性。我们在 WCNS 方案中采用神经网络作为加权函数,并采用数据驱动的方法来训练该神经网络。神经网络可以学习新的平滑度度量,并计算出固有的权重函数。为了简化机器学习任务并使用更少的数据进行训练,我们将先验知识整合到了学习过程中,例如伽利略不变输入层和 CNS 多项式。三角洲层的归一化(所谓的三角洲层用于计算输入特征)确保了 WCNS3-NN 方案在函数的任意标度下实现标度不变特性(Si-property),以及非连续函数的基本非振荡近似(ENO-property)。数据驱动的 WCNS 方案的 Si-property 和 ENO-property 得到了数值验证。介绍了几个一维和二维基准示例,包括强冲击和冲击-密度波相互作用,以展示所提方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信