{"title":"Algebraic cobordism and a Conner–Floyd isomorphism for algebraic K-theory","authors":"Toni Annala, Marc Hoyois, Ryomei Iwasa","doi":"10.1090/jams/1045","DOIUrl":null,"url":null,"abstract":"<p>We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal infinity\"> <mml:semantics> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-category of non-<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper A Superscript 1\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">A</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {A}^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant motivic spectra, which turns out to be equivalent to the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal infinity\"> <mml:semantics> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal infinity\"> <mml:semantics> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-category satisfies <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 1\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-homotopy invariance and weighted <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper A Superscript 1\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">A</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {A}^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-homotopy invariance, which we use in place of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper A Superscript 1\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">A</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {A}^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-homotopy invariance to obtain analogues of several key results from <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper A Superscript 1\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">A</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {A}^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-homotopy theory. These allow us in particular to define a universal oriented motivic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper E Subscript normal infinity\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">E</mml:mi> </mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb {E}_\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ring spectrum <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper M normal upper G normal upper L\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">M</mml:mi> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {MGL}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We then prove that the algebraic K-theory of a qcqs derived scheme <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be recovered from its <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper M normal upper G normal upper L\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">M</mml:mi> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {MGL}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cohomology via a Conner–Floyd isomorphism <disp-formula content-type=\"math/mathml\"> \\[ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper M normal upper G normal upper L Superscript asterisk asterisk Baseline left-parenthesis upper X right-parenthesis circled-times Subscript normal upper L Baseline double-struck upper Z left-bracket beta Superscript plus-or-minus 1 Baseline right-bracket asymptotically-equals normal upper K Superscript asterisk asterisk Baseline left-parenthesis upper X right-parenthesis comma\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"normal\">M</mml:mi> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mrow> </mml:mrow> </mml:mrow> </mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:msup> <mml:mi>β<!-- β --></mml:mi> <mml:mrow> <mml:mo>±<!-- ± --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mo>≃<!-- ≃ --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">K</mml:mi> </mml:mrow> <mml:msup> <mml:mrow> </mml:mrow> <mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {MGL}^{**}(X)\\otimes _{\\mathrm {L}{}}\\mathbb {Z}[\\beta ^{\\pm 1}]\\simeq \\mathrm {K}{}^{**}(X),</mml:annotation> </mml:semantics> </mml:math> \\] </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper L\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {L}{}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Lazard ring and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper K Superscript p comma q Baseline left-parenthesis upper X right-parenthesis equals normal upper K Subscript 2 q minus p Baseline left-parenthesis upper X right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">K</mml:mi> </mml:mrow> <mml:msup> <mml:mrow> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">K</mml:mi> </mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>q</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {K}{}^{p,q}(X)=\\mathrm {K}{}_{2q-p}(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, we prove a Snaith theorem for the periodized version of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper M normal upper G normal upper L\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">M</mml:mi> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {MGL}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"10 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/1045","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable ∞\infty-category of non-A1\mathbb {A}^1-invariant motivic spectra, which turns out to be equivalent to the ∞\infty-category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this ∞\infty-category satisfies P1\mathbb {P}^1-homotopy invariance and weighted A1\mathbb {A}^1-homotopy invariance, which we use in place of A1\mathbb {A}^1-homotopy invariance to obtain analogues of several key results from A1\mathbb {A}^1-homotopy theory. These allow us in particular to define a universal oriented motivic E∞\mathbb {E}_\infty-ring spectrum MGL\mathrm {MGL}. We then prove that the algebraic K-theory of a qcqs derived scheme XX can be recovered from its MGL\mathrm {MGL}-cohomology via a Conner–Floyd isomorphism \[ MGL∗∗(X)⊗LZ[β±1]≃K∗∗(X),\mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \] where L\mathrm {L}{} is the Lazard ring and Kp,q(X)=K2q−p(X)\mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X). Finally, we prove a Snaith theorem for the periodized version of MGL\mathrm {MGL}.
我们提出并证明了任意qcqs派生方案的代数K理论的康纳-弗洛伊德同构。为此,我们研究了非 A 1 \mathbb {A}^1 -不变动机谱的稳定∞ \infty -类,结果证明它等价于第一和第三作者之前引入的满足基本炸毁切除的基本动机谱的∞ \infty -类。我们证明这个∞ \infty -类满足 P 1 \mathbb {P}^1 -同调不变性和加权 A 1 \mathbb {A}^1 -同调不变性,我们用它来代替 A 1 \mathbb {A}^1 -同调不变性,从而得到 A 1 \mathbb {A}^1 -同调理论中几个关键结果的类似物。这些结果尤其允许我们定义一个普遍的定向动机 E ∞ \mathbb {E}_infty -ring 谱 M G L \mathrm {MGL} 。然后我们证明一个 qcqs 派生方案 X X 的代数 K 理论可以通过 Conner-Floyd 同构 \[ M G L ∗∗ ( X ) ⊗ L Z [ β ± 1 ] ≃ K ∗∗ ( X ) 从它的 M G L \mathrm {MGL} -同调中恢复出来、 \mathrm {MGL}^{**}(X)\otimes _{mathrm {L}{}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X)、 \其中 L 是拉扎德环,K p , q ( X ) = K 2 q - p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) 。最后,我们证明 M G L \mathrm {MGL} 周期化版本的斯奈斯定理。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.