Algebraic cobordism and a Conner–Floyd isomorphism for algebraic K-theory

IF 3.5 1区 数学 Q1 MATHEMATICS
Toni Annala, Marc Hoyois, Ryomei Iwasa
{"title":"Algebraic cobordism and a Conner–Floyd isomorphism for algebraic K-theory","authors":"Toni Annala, Marc Hoyois, Ryomei Iwasa","doi":"10.1090/jams/1045","DOIUrl":null,"url":null,"abstract":"<p>We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal infinity\"> <mml:semantics> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-category of non-<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper A Superscript 1\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">A</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {A}^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant motivic spectra, which turns out to be equivalent to the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal infinity\"> <mml:semantics> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal infinity\"> <mml:semantics> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-category satisfies <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 1\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-homotopy invariance and weighted <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper A Superscript 1\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">A</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {A}^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-homotopy invariance, which we use in place of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper A Superscript 1\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">A</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {A}^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-homotopy invariance to obtain analogues of several key results from <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper A Superscript 1\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">A</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {A}^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-homotopy theory. These allow us in particular to define a universal oriented motivic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper E Subscript normal infinity\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">E</mml:mi> </mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb {E}_\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ring spectrum <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper M normal upper G normal upper L\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">M</mml:mi> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {MGL}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We then prove that the algebraic K-theory of a qcqs derived scheme <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be recovered from its <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper M normal upper G normal upper L\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">M</mml:mi> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {MGL}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cohomology via a Conner–Floyd isomorphism <disp-formula content-type=\"math/mathml\"> \\[ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper M normal upper G normal upper L Superscript asterisk asterisk Baseline left-parenthesis upper X right-parenthesis circled-times Subscript normal upper L Baseline double-struck upper Z left-bracket beta Superscript plus-or-minus 1 Baseline right-bracket asymptotically-equals normal upper K Superscript asterisk asterisk Baseline left-parenthesis upper X right-parenthesis comma\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"normal\">M</mml:mi> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:msub> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mrow> </mml:mrow> </mml:mrow> </mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:msup> <mml:mi>β<!-- β --></mml:mi> <mml:mrow> <mml:mo>±<!-- ± --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">]</mml:mo> <mml:mo>≃<!-- ≃ --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">K</mml:mi> </mml:mrow> <mml:msup> <mml:mrow> </mml:mrow> <mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {MGL}^{**}(X)\\otimes _{\\mathrm {L}{}}\\mathbb {Z}[\\beta ^{\\pm 1}]\\simeq \\mathrm {K}{}^{**}(X),</mml:annotation> </mml:semantics> </mml:math> \\] </disp-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper L\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {L}{}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Lazard ring and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper K Superscript p comma q Baseline left-parenthesis upper X right-parenthesis equals normal upper K Subscript 2 q minus p Baseline left-parenthesis upper X right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">K</mml:mi> </mml:mrow> <mml:msup> <mml:mrow> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">K</mml:mi> </mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>q</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {K}{}^{p,q}(X)=\\mathrm {K}{}_{2q-p}(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, we prove a Snaith theorem for the periodized version of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper M normal upper G normal upper L\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">M</mml:mi> <mml:mi mathvariant=\"normal\">G</mml:mi> <mml:mi mathvariant=\"normal\">L</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {MGL}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/1045","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable \infty -category of non- A 1 \mathbb {A}^1 -invariant motivic spectra, which turns out to be equivalent to the \infty -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this \infty -category satisfies P 1 \mathbb {P}^1 -homotopy invariance and weighted A 1 \mathbb {A}^1 -homotopy invariance, which we use in place of A 1 \mathbb {A}^1 -homotopy invariance to obtain analogues of several key results from A 1 \mathbb {A}^1 -homotopy theory. These allow us in particular to define a universal oriented motivic E \mathbb {E}_\infty -ring spectrum M G L \mathrm {MGL} . We then prove that the algebraic K-theory of a qcqs derived scheme X X can be recovered from its M G L \mathrm {MGL} -cohomology via a Conner–Floyd isomorphism \[ M G L ( X ) L Z [ β ± 1 ] K ( X ) , \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \] where L \mathrm {L}{} is the Lazard ring and K p , q ( X ) = K 2 q p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) . Finally, we prove a Snaith theorem for the periodized version of M G L \mathrm {MGL} .

代数 K 理论的代数共线性和康纳-弗洛伊德同构
我们提出并证明了任意qcqs派生方案的代数K理论的康纳-弗洛伊德同构。为此,我们研究了非 A 1 \mathbb {A}^1 -不变动机谱的稳定∞ \infty -类,结果证明它等价于第一和第三作者之前引入的满足基本炸毁切除的基本动机谱的∞ \infty -类。我们证明这个∞ \infty -类满足 P 1 \mathbb {P}^1 -同调不变性和加权 A 1 \mathbb {A}^1 -同调不变性,我们用它来代替 A 1 \mathbb {A}^1 -同调不变性,从而得到 A 1 \mathbb {A}^1 -同调理论中几个关键结果的类似物。这些结果尤其允许我们定义一个普遍的定向动机 E ∞ \mathbb {E}_infty -ring 谱 M G L \mathrm {MGL} 。然后我们证明一个 qcqs 派生方案 X X 的代数 K 理论可以通过 Conner-Floyd 同构 \[ M G L ∗∗ ( X ) ⊗ L Z [ β ± 1 ] ≃ K ∗∗ ( X ) 从它的 M G L \mathrm {MGL} -同调中恢复出来、 \mathrm {MGL}^{**}(X)\otimes _{mathrm {L}{}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X)、 \其中 L 是拉扎德环,K p , q ( X ) = K 2 q - p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) 。最后,我们证明 M G L \mathrm {MGL} 周期化版本的斯奈斯定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信