On the variation of small-amplitude Forbush decreases with solar-geomagnetic parameters

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Chukwuebuka J. Ugwu, Ogbonnaya Okike, Firew M. Menteso, Jibrin A. Alhassan, Dominic C. Obiegbuna, Augustine E. Chukwude, Romanus E. Ugwoke, Evaristus U. Iyida, Innocent O. Eya, Ugochukwu C. Enwelum, Orji P. Orji
{"title":"On the variation of small-amplitude Forbush decreases with solar-geomagnetic parameters","authors":"Chukwuebuka J. Ugwu,&nbsp;Ogbonnaya Okike,&nbsp;Firew M. Menteso,&nbsp;Jibrin A. Alhassan,&nbsp;Dominic C. Obiegbuna,&nbsp;Augustine E. Chukwude,&nbsp;Romanus E. Ugwoke,&nbsp;Evaristus U. Iyida,&nbsp;Innocent O. Eya,&nbsp;Ugochukwu C. Enwelum,&nbsp;Orji P. Orji","doi":"10.1007/s10509-024-04310-w","DOIUrl":null,"url":null,"abstract":"<div><p>Detection of weak signals remains challenging in astrophysics. This is particularly applicable in the investigation of Forbush events. There is thus, a paucity of catalogs of small-amplitude Forbush decreases (FDs). Detail investigations of the space-weather implications of small FDs are, thus, lacking in the literature. Recently, large catalogs of weak FDs, for the first time, have been published. This work employs the newly created lists of small-amplitude FDs to investigate the statistical link between small FDs and solar-geomagnetic variables. The solar-geomagnetic variables were obtained from the OMNI database. A simple coincident <b>R</b> software code was employed in matching the related solar-geomagnetic variables with the weak Forbush events. The FD dates were taken as the input signal. Scatter plots of FDs against interplanetary magnetic field (IMF), solar wind speed (SWS), planetary K-index (Kp) and planetary A-index (Ap) reveal a negative relationship, while that of FDs against disturbance storm time index (Dst) shows a positive relationship. Statistical significance of these relations were tested. The small-amplitude FDs and solar-geomagnetic variables at Potchefstroom (PTFM) station register statistically significant relations. Non-statistically significant correlation between the small-amplitude FDs and solar-geomagnetic variables were obtained at South Pole (SOPO) station, with the exception of FD-SWS that reveals statistically significant correlation. The differences in the correlation results obtained at the two stations (PTFM and SOPO) could be attributed to the differences in the characteristics of the NM stations. These results suggest that geomagnetic storm indices play important role in the evolution of FDs.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04310-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Detection of weak signals remains challenging in astrophysics. This is particularly applicable in the investigation of Forbush events. There is thus, a paucity of catalogs of small-amplitude Forbush decreases (FDs). Detail investigations of the space-weather implications of small FDs are, thus, lacking in the literature. Recently, large catalogs of weak FDs, for the first time, have been published. This work employs the newly created lists of small-amplitude FDs to investigate the statistical link between small FDs and solar-geomagnetic variables. The solar-geomagnetic variables were obtained from the OMNI database. A simple coincident R software code was employed in matching the related solar-geomagnetic variables with the weak Forbush events. The FD dates were taken as the input signal. Scatter plots of FDs against interplanetary magnetic field (IMF), solar wind speed (SWS), planetary K-index (Kp) and planetary A-index (Ap) reveal a negative relationship, while that of FDs against disturbance storm time index (Dst) shows a positive relationship. Statistical significance of these relations were tested. The small-amplitude FDs and solar-geomagnetic variables at Potchefstroom (PTFM) station register statistically significant relations. Non-statistically significant correlation between the small-amplitude FDs and solar-geomagnetic variables were obtained at South Pole (SOPO) station, with the exception of FD-SWS that reveals statistically significant correlation. The differences in the correlation results obtained at the two stations (PTFM and SOPO) could be attributed to the differences in the characteristics of the NM stations. These results suggest that geomagnetic storm indices play important role in the evolution of FDs.

Abstract Image

Abstract Image

关于小振幅福布什下降随太阳地磁参数的变化
在天体物理学中,探测微弱信号仍然具有挑战性。这一点在福布什事件的研究中尤其适用。因此,小振幅福布什下降(FDs)的目录非常少。因此,文献中缺乏对小幅福布什下降对空间天气影响的详细研究。最近,首次出版了大量的弱 FDs 目录。这项工作利用新建立的小振幅 FD 列表来研究小 FD 与太阳地磁变量之间的统计联系。太阳地磁变量来自 OMNI 数据库。在将相关的太阳地磁变量与弱福尔布什事件进行匹配时,使用了一个简单的重合 R 软件代码。FD 日期作为输入信号。FDs与行星际磁场(IMF)、太阳风速(SWS)、行星K指数(Kp)和行星A指数(Ap)的散点图显示出负相关关系,而FDs与扰动风暴时间指数(Dst)的散点图显示出正相关关系。对这些关系的统计意义进行了检验。波切夫斯特鲁姆(Potchefstroom,PTFM)站的小振幅 FD 与太阳地磁变量在统计上有显著关系。南极(SOPO)站的小振幅 FD 与太阳地磁变量之间的相关性在统计上不显著,但 FD-SWS 除外,在统计上有显著相关性。两个台站(PTFM 和 SOPO)的相关性结果不同,可能是由于 NM 台站的特性不同。这些结果表明,地磁暴指数在外空变化中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信