A better than exponent for iterated sums and products over

IF 0.6 3区 数学 Q3 MATHEMATICS
OLIVER ROCHE–NEWTON
{"title":"A better than exponent for iterated sums and products over","authors":"OLIVER ROCHE–NEWTON","doi":"10.1017/s0305004124000112","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the bound <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0305004124000112_eqnU1.png\"/> <jats:tex-math> \\begin{equation*}\\max \\{ |8A-7A|,|5f(A)-4f(A)| \\} \\gg |A|^{\\frac{3}{2} + \\frac{1}{54}}\\end{equation*} </jats:tex-math> </jats:alternatives> </jats:disp-formula>holds for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000112_inline6.png\"/> <jats:tex-math> $A \\subset \\mathbb R$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and for all convex functions <jats:italic>f</jats:italic> which satisfy an additional technical condition. This technical condition is satisfied by the logarithmic function, and this fact can be used to deduce a sum-product estimate <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0305004124000112_eqnU2.png\"/> <jats:tex-math> \\begin{equation*}\\max \\{ |16A|, |A^{(16)}| \\} \\gg |A|^{\\frac{3}{2} + c},\\end{equation*} </jats:tex-math> </jats:alternatives> </jats:disp-formula>for some <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000112_inline7.png\"/> <jats:tex-math> $c\\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Previously, no sum-product estimate over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000112_inline8.png\"/> <jats:tex-math> $\\mathbb R$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with exponent strictly greater than <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000112_inline9.png\"/> <jats:tex-math> $3/2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> was known for any number of variables. Moreover, the technical condition on <jats:italic>f</jats:italic> seems to be satisfied for most interesting cases, and we give some further applications. In particular, we show that <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0305004124000112_eqnU3.png\"/> <jats:tex-math> \\begin{equation*}|AA| \\leq K|A| \\implies \\,\\forall d \\in \\mathbb R \\setminus \\{0 \\}, \\,\\, |\\{(a,b) \\in A \\times A : a-b=d \\}| \\ll K^C |A|^{\\frac{2}{3}-c^{\\prime}},\\end{equation*} </jats:tex-math> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000112_inline10.png\"/> <jats:tex-math> $c,C \\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are absolute constants.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"18 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000112","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove that the bound \begin{equation*}\max \{ |8A-7A|,|5f(A)-4f(A)| \} \gg |A|^{\frac{3}{2} + \frac{1}{54}}\end{equation*} holds for all $A \subset \mathbb R$ , and for all convex functions f which satisfy an additional technical condition. This technical condition is satisfied by the logarithmic function, and this fact can be used to deduce a sum-product estimate \begin{equation*}\max \{ |16A|, |A^{(16)}| \} \gg |A|^{\frac{3}{2} + c},\end{equation*} for some $c\gt 0$ . Previously, no sum-product estimate over $\mathbb R$ with exponent strictly greater than $3/2$ was known for any number of variables. Moreover, the technical condition on f seems to be satisfied for most interesting cases, and we give some further applications. In particular, we show that \begin{equation*}|AA| \leq K|A| \implies \,\forall d \in \mathbb R \setminus \{0 \}, \,\, |\{(a,b) \in A \times A : a-b=d \}| \ll K^C |A|^{\frac{2}{3}-c^{\prime}},\end{equation*} where $c,C \gt 0$ are absolute constants.
迭代求和与乘积的指数,比
在本文中,我们证明了束缚(begin{equation*}\max \{ |8A-7A|,|5f(A)-4f(A)| \}|gg |A|^{\frac{3}{2}+ frac{1}{54}}end{equation*} 对于所有 $A \subset \mathbb R$ 以及所有满足附加技术条件的凸函数 f 都成立。对数函数满足这个技术条件,这个事实可以用来推导出一个和积估计值。|A|^{frac{3}{2}.+ c},\end{equation*} for some $c\gt 0$ .在此之前,对于任意数量的变量,都不知道在 $\mathbb R$ 上有指数严格大于 3/2$ 的和积估计。此外,关于 f 的技术条件似乎在大多数有趣的情况下都能满足,我们给出了一些进一步的应用。特别是,我们证明了begin{equation*}|AA|leq K|A| implies \,\forall d \in \mathbb R \setminus \{0 \},\,\,||{(a,b)\in A \times A :a-b=d \}| |ll K^C |A|^{\frac{2}{3}-c^{\prime}},\end{equation*} 其中 $c,C \gt 0$ 是绝对常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信