{"title":"A better than exponent for iterated sums and products over","authors":"OLIVER ROCHE–NEWTON","doi":"10.1017/s0305004124000112","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the bound <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0305004124000112_eqnU1.png\"/> <jats:tex-math> \\begin{equation*}\\max \\{ |8A-7A|,|5f(A)-4f(A)| \\} \\gg |A|^{\\frac{3}{2} + \\frac{1}{54}}\\end{equation*} </jats:tex-math> </jats:alternatives> </jats:disp-formula>holds for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000112_inline6.png\"/> <jats:tex-math> $A \\subset \\mathbb R$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and for all convex functions <jats:italic>f</jats:italic> which satisfy an additional technical condition. This technical condition is satisfied by the logarithmic function, and this fact can be used to deduce a sum-product estimate <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0305004124000112_eqnU2.png\"/> <jats:tex-math> \\begin{equation*}\\max \\{ |16A|, |A^{(16)}| \\} \\gg |A|^{\\frac{3}{2} + c},\\end{equation*} </jats:tex-math> </jats:alternatives> </jats:disp-formula>for some <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000112_inline7.png\"/> <jats:tex-math> $c\\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Previously, no sum-product estimate over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000112_inline8.png\"/> <jats:tex-math> $\\mathbb R$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with exponent strictly greater than <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000112_inline9.png\"/> <jats:tex-math> $3/2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> was known for any number of variables. Moreover, the technical condition on <jats:italic>f</jats:italic> seems to be satisfied for most interesting cases, and we give some further applications. In particular, we show that <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0305004124000112_eqnU3.png\"/> <jats:tex-math> \\begin{equation*}|AA| \\leq K|A| \\implies \\,\\forall d \\in \\mathbb R \\setminus \\{0 \\}, \\,\\, |\\{(a,b) \\in A \\times A : a-b=d \\}| \\ll K^C |A|^{\\frac{2}{3}-c^{\\prime}},\\end{equation*} </jats:tex-math> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000112_inline10.png\"/> <jats:tex-math> $c,C \\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are absolute constants.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"18 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000112","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we prove that the bound \begin{equation*}\max \{ |8A-7A|,|5f(A)-4f(A)| \} \gg |A|^{\frac{3}{2} + \frac{1}{54}}\end{equation*} holds for all $A \subset \mathbb R$ , and for all convex functions f which satisfy an additional technical condition. This technical condition is satisfied by the logarithmic function, and this fact can be used to deduce a sum-product estimate \begin{equation*}\max \{ |16A|, |A^{(16)}| \} \gg |A|^{\frac{3}{2} + c},\end{equation*} for some $c\gt 0$ . Previously, no sum-product estimate over $\mathbb R$ with exponent strictly greater than $3/2$ was known for any number of variables. Moreover, the technical condition on f seems to be satisfied for most interesting cases, and we give some further applications. In particular, we show that \begin{equation*}|AA| \leq K|A| \implies \,\forall d \in \mathbb R \setminus \{0 \}, \,\, |\{(a,b) \in A \times A : a-b=d \}| \ll K^C |A|^{\frac{2}{3}-c^{\prime}},\end{equation*} where $c,C \gt 0$ are absolute constants.
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.