On radical filtrations of parabolic Verma modules

IF 0.6 3区 数学 Q3 MATHEMATICS
Jun Hu, Wei Xiao
{"title":"On radical filtrations of parabolic Verma modules","authors":"Jun Hu, Wei Xiao","doi":"10.4310/mrl.2023.v30.n5.a7","DOIUrl":null,"url":null,"abstract":"In this paper we give a sum formula for the radical filtration of parabolic Verma modules in any (possibly singular) blocks of parabolic BGG category. It can be viewed as a generalization of the Jantzen sum formula for Verma modules in the usual BGG category $\\mathcal{O}$. The proof makes use of the graded version of parabolic BGG category. Explicit formulae for the graded decomposition numbers and inverse graded decomposition numbers of parabolic Verma modules in any (possibly singular) integral blocks of the parabolic BGG category are also given in terms of the Kazhdan–Lusztig polynomials.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n5.a7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we give a sum formula for the radical filtration of parabolic Verma modules in any (possibly singular) blocks of parabolic BGG category. It can be viewed as a generalization of the Jantzen sum formula for Verma modules in the usual BGG category $\mathcal{O}$. The proof makes use of the graded version of parabolic BGG category. Explicit formulae for the graded decomposition numbers and inverse graded decomposition numbers of parabolic Verma modules in any (possibly singular) integral blocks of the parabolic BGG category are also given in terms of the Kazhdan–Lusztig polynomials.
论抛物线维尔马模块的根滤波
在本文中,我们给出了抛物面 BGG 类中任何(可能是奇异的)块中的抛物面 Verma 模块的基滤波总和公式。它可以看作是通常 BGG 范畴 $\mathcal{O}$ 中 Verma 模块的 Jantzen 求和公式的广义化。证明利用了抛物线 BGG 范畴的分级版本。还给出了在抛物 BGG 范畴的任何(可能是奇异的)积分块中抛物 Verma 模块的分级分解数和反分级分解数的明确公式,这些公式都是用卡兹丹-卢兹蒂格多项式表示的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信