Modular forms, deformation of punctured spheres, and extensions of symmetric tensor representations

IF 0.6 3区 数学 Q3 MATHEMATICS
Gabriele Bogo
{"title":"Modular forms, deformation of punctured spheres, and extensions of symmetric tensor representations","authors":"Gabriele Bogo","doi":"10.4310/mrl.2023.v30.n5.a2","DOIUrl":null,"url":null,"abstract":"Let $X = \\mathbb{H}/\\Gamma$ be an $n$-punctured sphere, $n \\gt 3$. We introduce and study $n-3$ deformation operators on the space of modular forms $M_\\ast (\\Gamma)$ based on the classical theory of uniformizing differential equations and accessory parameters. When restricting to modular functions, we recover a construction in Teichmüller theory related to the deformation of the complex structure of $X$. We describe the deformation operators in terms of derivations with respect to Eichler integrals of weight-four cusp forms, and in terms of vector-valued modular forms attached to extensions of symmetric tensor representations.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"17 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n5.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $X = \mathbb{H}/\Gamma$ be an $n$-punctured sphere, $n \gt 3$. We introduce and study $n-3$ deformation operators on the space of modular forms $M_\ast (\Gamma)$ based on the classical theory of uniformizing differential equations and accessory parameters. When restricting to modular functions, we recover a construction in Teichmüller theory related to the deformation of the complex structure of $X$. We describe the deformation operators in terms of derivations with respect to Eichler integrals of weight-four cusp forms, and in terms of vector-valued modular forms attached to extensions of symmetric tensor representations.
模块形式、穿刺球变形和对称张量表示的扩展
让 $X = \mathbb{H}/\Gamma$ 是一个 $n$ 穿孔球体,$n \gt 3$。我们基于均化微分方程和附属参数的经典理论,引入并研究了模态空间 $M_\ast (\Gamma)$ 上的 $n-3$ 变形算子。当限制到模态函数时,我们恢复了与 $X$ 复结构变形有关的泰希米勒理论构造。我们用与权四尖顶形式的艾希勒积分有关的推导,以及与对称张量表示的扩展相连的向量值模态形式来描述变形算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信