{"title":"Spike and slab Bayesian sparse principal component analysis","authors":"Yu-Chien Bo Ning, Ning Ning","doi":"10.1007/s11222-024-10430-8","DOIUrl":null,"url":null,"abstract":"<p>Sparse principal component analysis (SPCA) is a popular tool for dimensionality reduction in high-dimensional data. However, there is still a lack of theoretically justified Bayesian SPCA methods that can scale well computationally. One of the major challenges in Bayesian SPCA is selecting an appropriate prior for the loadings matrix, considering that principal components are mutually orthogonal. We propose a novel parameter-expanded coordinate ascent variational inference (PX-CAVI) algorithm. This algorithm utilizes a spike and slab prior, which incorporates parameter expansion to cope with the orthogonality constraint. Besides comparing to two popular SPCA approaches, we introduce the PX-EM algorithm as an EM analogue to the PX-CAVI algorithm for comparison. Through extensive numerical simulations, we demonstrate that the PX-CAVI algorithm outperforms these SPCA approaches, showcasing its superiority in terms of performance. We study the posterior contraction rate of the variational posterior, providing a novel contribution to the existing literature. The PX-CAVI algorithm is then applied to study a lung cancer gene expression dataset. The <span>\\(\\textsf{R}\\)</span> package <span>\\(\\textsf{VBsparsePCA}\\)</span> with an implementation of the algorithm is available on the Comprehensive R Archive Network (CRAN).</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10430-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Sparse principal component analysis (SPCA) is a popular tool for dimensionality reduction in high-dimensional data. However, there is still a lack of theoretically justified Bayesian SPCA methods that can scale well computationally. One of the major challenges in Bayesian SPCA is selecting an appropriate prior for the loadings matrix, considering that principal components are mutually orthogonal. We propose a novel parameter-expanded coordinate ascent variational inference (PX-CAVI) algorithm. This algorithm utilizes a spike and slab prior, which incorporates parameter expansion to cope with the orthogonality constraint. Besides comparing to two popular SPCA approaches, we introduce the PX-EM algorithm as an EM analogue to the PX-CAVI algorithm for comparison. Through extensive numerical simulations, we demonstrate that the PX-CAVI algorithm outperforms these SPCA approaches, showcasing its superiority in terms of performance. We study the posterior contraction rate of the variational posterior, providing a novel contribution to the existing literature. The PX-CAVI algorithm is then applied to study a lung cancer gene expression dataset. The \(\textsf{R}\) package \(\textsf{VBsparsePCA}\) with an implementation of the algorithm is available on the Comprehensive R Archive Network (CRAN).
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.