Numerical investigations of the extensive entanglement Hamiltonian in quantum spin ladders

Chengshu Li, Xingyu Li, Yi-Neng Zhou
{"title":"Numerical investigations of the extensive entanglement Hamiltonian in quantum spin ladders","authors":"Chengshu Li, Xingyu Li, Yi-Neng Zhou","doi":"10.1007/s44214-024-00056-2","DOIUrl":null,"url":null,"abstract":"<p>Entanglement constitutes one of the key concepts in quantum mechanics and serves as an indispensable tool in the understanding of quantum many-body systems. In this work, we perform extensive numerical investigations of extensive entanglement properties of coupled quantum spin chains. This setup has proven useful for e.g. extending the Lieb–Schultz–Mattis theorem to open systems, and contrasts the majority of previous research where the entanglement cut has one lower dimension than the system. We focus on the cases where the entanglement Hamiltonian is either gapless or exhibits spontaneous symmetry breaking behavior. We further employ conformal field theoretical formulae to identify the universal behavior in the former case. The results in our work can serve as a paradigmatic starting point for more systematic exploration of the largely uncharted physics of extensive entanglement, both analytical and numerical.</p>","PeriodicalId":501227,"journal":{"name":"Quantum Frontiers","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44214-024-00056-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Entanglement constitutes one of the key concepts in quantum mechanics and serves as an indispensable tool in the understanding of quantum many-body systems. In this work, we perform extensive numerical investigations of extensive entanglement properties of coupled quantum spin chains. This setup has proven useful for e.g. extending the Lieb–Schultz–Mattis theorem to open systems, and contrasts the majority of previous research where the entanglement cut has one lower dimension than the system. We focus on the cases where the entanglement Hamiltonian is either gapless or exhibits spontaneous symmetry breaking behavior. We further employ conformal field theoretical formulae to identify the universal behavior in the former case. The results in our work can serve as a paradigmatic starting point for more systematic exploration of the largely uncharted physics of extensive entanglement, both analytical and numerical.

Abstract Image

量子自旋梯中广泛纠缠哈密顿的数值研究
纠缠是量子力学的关键概念之一,也是理解量子多体系统不可或缺的工具。在这项工作中,我们对耦合量子自旋链的广泛纠缠特性进行了广泛的数值研究。事实证明,这种设置对于将李布-舒尔茨-马蒂斯定理扩展到开放系统等方面非常有用,而且与以往大多数研究形成鲜明对比的是,纠缠切分的维度比系统低一个维度。我们重点研究了纠缠哈密顿无间隙或表现出自发对称破缺行为的情况。我们进一步运用共形场论公式来确定前一种情况下的普遍行为。我们的研究成果可以作为一个范例性的起点,为更系统地探索广泛纠缠的未知物理学提供分析和数值支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信