{"title":"Direct observation of the atomic density fluctuation originating from the first sharp diffraction peak in SiO2 glass","authors":"Akihiko Hirata, Shuya Sato, Motoki Shiga, Yohei Onodera, Koji Kimoto, Shinji Kohara","doi":"10.1038/s41427-024-00544-w","DOIUrl":null,"url":null,"abstract":"<p>The intermediate-range order of covalently bonded glasses has been extensively studied in terms of their diffraction peaks observed at low scattering angles; these peaks are called the first sharp diffraction peaks (FSDPs). Although the atomic density fluctuations originating from the quasilattice planes are a critical scientific target, direct experimental observations of these fluctuations are still lacking. Here, we report the direct observation of the atomic density fluctuations in silica glass by energy-filtered angstrom-beam electron diffraction. The correspondence between the local electron diffraction patterns of FSDPs and the atomic configurations constructed based on the X-ray and neutron diffraction results revealed that the local atomic density fluctuations originated from the quasi-periodic alternating arrangements of the columnar chain-like atomic configurations and interstitial tubular voids, as in crystals. We also discovered longer-range fluctuations associated with the shoulder of the FSDP on the low-<i>Q</i> side. The hierarchical fluctuations inherent in materials could aid in the elucidation of their properties and performance.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41427-024-00544-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The intermediate-range order of covalently bonded glasses has been extensively studied in terms of their diffraction peaks observed at low scattering angles; these peaks are called the first sharp diffraction peaks (FSDPs). Although the atomic density fluctuations originating from the quasilattice planes are a critical scientific target, direct experimental observations of these fluctuations are still lacking. Here, we report the direct observation of the atomic density fluctuations in silica glass by energy-filtered angstrom-beam electron diffraction. The correspondence between the local electron diffraction patterns of FSDPs and the atomic configurations constructed based on the X-ray and neutron diffraction results revealed that the local atomic density fluctuations originated from the quasi-periodic alternating arrangements of the columnar chain-like atomic configurations and interstitial tubular voids, as in crystals. We also discovered longer-range fluctuations associated with the shoulder of the FSDP on the low-Q side. The hierarchical fluctuations inherent in materials could aid in the elucidation of their properties and performance.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.