{"title":"Evaluation of eco-environmental quality and analysis of driving forces in the yellow river delta based on improved remote sensing ecological indices","authors":"Dongling Ma, Qingji Huang, Qian Zhang, Qian Wang, Hailong Xu, Yingwei Yan","doi":"10.1007/s00477-024-02740-0","DOIUrl":null,"url":null,"abstract":"<p>The ecological environment of the Yellow River Delta is undergoing serious degradation due to the pressures of economic development and population growth. To improve and protect the ecological environment, it is crucial to accurately assess and monitor its eco-environmental quality. With consideration of the characteristics of terrestrial salinization in the region and the need for long-term ecological monitoring, we first utilized Google Earth Engine (GEE) to construct the Improved Remote Sensing Ecological Index (IRSEI). The IRSEI is based on the Remote Sensing Ecological Index (RSEI), which consists of the Normalized Difference Vegetation Index (NDVI), WET, Land Surface Temperature (LST), and Normalized Difference Built-Up and Soil Index (NDBSI), as well as the Net Primary Productivity (NPP) index. The entropy weighting method was employed to construct the IRSEI for assessing the eco-environmental quality of the Yellow River Delta. The validity of the index was verified through image entropy and contrast assessment. We then employed the Hurst exponent, Sen's slope estimation, and Coefficient of Variation (CV) to calculate the range of variation of the IRSEI in the Yellow River Delta over a 20-year period to analyze the spatio-temporal evolution of the ecological quality and its distribution pattern. Furthermore, we conducted a comprehensive analysis combining the Geographically and Temporally Weighted Regression (GTWR) model and Geodetector to understand the influence of drivers such as topography, soil, and climate on the IRSEI, considering both the temporal and spatial dimensions. The results indicate that: (1) The proposed IRSEI demonstrates higher reliability, adaptability, and sensitivity compared to RSEI in monitoring the eco-environmental quality of the Yellow River Delta. (2) From 2000 to 2020, the eco-environmental quality of the Yellow River Delta remained generally stable, with a spatial distribution resembling a \"Y\" shape, showing significant improvement, particularly in Lijin County and its surrounding areas. However, the middle and eastern estuary exhibited a declining trend in eco-environmental quality. (3) The impact of driving factors on the eco-environmental quality varied across the four subordinate regions of the Yellow River Delta, indicating spatial heterogeneity. Factors such as FVC, Soil, LST, JS, and Srad significantly influenced and explained the spatial differentiation of eco-environmental quality in the region. The proposed IRSEI demonstrates better monitoring capabilities in the Yellow River Delta compared to RSEI, providing a scientific basis for land use planning and ecological protection in the area.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"20 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02740-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The ecological environment of the Yellow River Delta is undergoing serious degradation due to the pressures of economic development and population growth. To improve and protect the ecological environment, it is crucial to accurately assess and monitor its eco-environmental quality. With consideration of the characteristics of terrestrial salinization in the region and the need for long-term ecological monitoring, we first utilized Google Earth Engine (GEE) to construct the Improved Remote Sensing Ecological Index (IRSEI). The IRSEI is based on the Remote Sensing Ecological Index (RSEI), which consists of the Normalized Difference Vegetation Index (NDVI), WET, Land Surface Temperature (LST), and Normalized Difference Built-Up and Soil Index (NDBSI), as well as the Net Primary Productivity (NPP) index. The entropy weighting method was employed to construct the IRSEI for assessing the eco-environmental quality of the Yellow River Delta. The validity of the index was verified through image entropy and contrast assessment. We then employed the Hurst exponent, Sen's slope estimation, and Coefficient of Variation (CV) to calculate the range of variation of the IRSEI in the Yellow River Delta over a 20-year period to analyze the spatio-temporal evolution of the ecological quality and its distribution pattern. Furthermore, we conducted a comprehensive analysis combining the Geographically and Temporally Weighted Regression (GTWR) model and Geodetector to understand the influence of drivers such as topography, soil, and climate on the IRSEI, considering both the temporal and spatial dimensions. The results indicate that: (1) The proposed IRSEI demonstrates higher reliability, adaptability, and sensitivity compared to RSEI in monitoring the eco-environmental quality of the Yellow River Delta. (2) From 2000 to 2020, the eco-environmental quality of the Yellow River Delta remained generally stable, with a spatial distribution resembling a "Y" shape, showing significant improvement, particularly in Lijin County and its surrounding areas. However, the middle and eastern estuary exhibited a declining trend in eco-environmental quality. (3) The impact of driving factors on the eco-environmental quality varied across the four subordinate regions of the Yellow River Delta, indicating spatial heterogeneity. Factors such as FVC, Soil, LST, JS, and Srad significantly influenced and explained the spatial differentiation of eco-environmental quality in the region. The proposed IRSEI demonstrates better monitoring capabilities in the Yellow River Delta compared to RSEI, providing a scientific basis for land use planning and ecological protection in the area.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.