Deep potential molecular dynamic and electrochemical experiments to reveal the structure and behavior of Mn(II) in magnesium electrolysis

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Taixi Feng, Zhaoting Liu, Guimin Lu
{"title":"Deep potential molecular dynamic and electrochemical experiments to reveal the structure and behavior of Mn(II) in magnesium electrolysis","authors":"Taixi Feng, Zhaoting Liu, Guimin Lu","doi":"10.1007/s43153-024-00465-9","DOIUrl":null,"url":null,"abstract":"<p>Magnesium (Mg) production via electrolysis can offer an efficient and sustainable alternative to conventional metallothermic processes. However, electrolytic systems contain impurities like manganese (Mn) that significantly influence efficiency and product quality. This study investigates the local structure of Mn<sup>2+</sup> and the intricate electrochemical behavior of Mn(II) within MgCl<sub>2</sub>-NaCl-KCl melts, aiming to explore its impacts on electrode kinetics. Deep Potential Molecular Dynamics (DPMD) method is applied for structure introduction, and a strange chloride layer around Mn<sup>2+</sup> is observed. Furthermore, cyclic voltammetry, chronopotentiometry, and other techniques are employed for study using tungsten electrodes with introduced MnCl<sub>2</sub>. Results reveal the quasi-reversible reduction of Mn(II) on tungsten. The diffusion coefficients (<i>D</i>) of Mn(II) at different temperatures are summarized, and an activation energy of 30.60 kJ·mol<sup>-1</sup> for diffusion is found. Mn electrodeposition follows instantaneous nucleation. While limited in scope, these findings provide important insights into Mn(II) interactions that could inform efforts to optimize Mg electrolysis. Further research on Mn(II) effects on melt structure is still needed to understand electrolytic systems comprehensively. This work significantly furthers the fundamental comprehension of Mn(II) electrochemistry within industrial Mg production.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00465-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium (Mg) production via electrolysis can offer an efficient and sustainable alternative to conventional metallothermic processes. However, electrolytic systems contain impurities like manganese (Mn) that significantly influence efficiency and product quality. This study investigates the local structure of Mn2+ and the intricate electrochemical behavior of Mn(II) within MgCl2-NaCl-KCl melts, aiming to explore its impacts on electrode kinetics. Deep Potential Molecular Dynamics (DPMD) method is applied for structure introduction, and a strange chloride layer around Mn2+ is observed. Furthermore, cyclic voltammetry, chronopotentiometry, and other techniques are employed for study using tungsten electrodes with introduced MnCl2. Results reveal the quasi-reversible reduction of Mn(II) on tungsten. The diffusion coefficients (D) of Mn(II) at different temperatures are summarized, and an activation energy of 30.60 kJ·mol-1 for diffusion is found. Mn electrodeposition follows instantaneous nucleation. While limited in scope, these findings provide important insights into Mn(II) interactions that could inform efforts to optimize Mg electrolysis. Further research on Mn(II) effects on melt structure is still needed to understand electrolytic systems comprehensively. This work significantly furthers the fundamental comprehension of Mn(II) electrochemistry within industrial Mg production.

Abstract Image

通过深电位分子动力学和电化学实验揭示锰(II)在镁电解中的结构和行为
通过电解法生产镁(Mg)是传统冶金工艺的一种高效、可持续的替代方法。然而,电解系统中含有的锰(Mn)等杂质会严重影响效率和产品质量。本研究调查了 MgCl2-NaCl-KCl 熔体中 Mn2+ 的局部结构和 Mn(II)错综复杂的电化学行为,旨在探索其对电极动力学的影响。应用深电位分子动力学(DPMD)方法介绍了 Mn2+ 的结构,并观察到 Mn2+ 周围有一个奇怪的氯化物层。此外,还采用了循环伏安法、时变电位法和其他技术,使用引入了 MnCl2 的钨电极进行研究。结果表明,锰(II)在钨上发生了准可逆还原。总结了不同温度下 Mn(II)的扩散系数(D),发现扩散的活化能为 30.60 kJ-mol-1。锰的电沉积遵循瞬时成核。虽然研究范围有限,但这些发现提供了有关锰(II)相互作用的重要见解,可为优化镁电解过程提供参考。要全面了解电解系统,还需要进一步研究锰(II)对熔体结构的影响。这项工作极大地促进了对工业镁生产中锰(II)电化学的基本理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信