Gaining or losing perspective for convex multivariate functions on box domains

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Luze Xu, Jon Lee
{"title":"Gaining or losing perspective for convex multivariate functions on box domains","authors":"Luze Xu, Jon Lee","doi":"10.1007/s10107-024-02087-y","DOIUrl":null,"url":null,"abstract":"<p>Mixed-integer nonlinear optimization formulations of the disjunction between the origin and a polytope via a binary indicator variable is broadly used in nonlinear combinatorial optimization for modeling a fixed cost associated with carrying out a group of activities and a convex cost function associated with the levels of the activities. The perspective relaxation of such models is often used to solve to global optimality in a branch-and-bound context, but it typically requires suitable conic solvers and is not compatible with general-purpose NLP software in the presence of other classes of constraints. This motivates the investigation of when simpler but weaker relaxations may be adequate. Comparing the volume (i.e., Lebesgue measure) of the relaxations as a measure of tightness, we lift some of the results related to the simplex case to the box case. In order to compare the volumes of different relaxations in the box case, it is necessary to find an appropriate concave upper bound that preserves the convexity and is minimal, which is more difficult than in the simplex case. To address the challenge beyond the simplex case, the triangulation approach is used.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02087-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Mixed-integer nonlinear optimization formulations of the disjunction between the origin and a polytope via a binary indicator variable is broadly used in nonlinear combinatorial optimization for modeling a fixed cost associated with carrying out a group of activities and a convex cost function associated with the levels of the activities. The perspective relaxation of such models is often used to solve to global optimality in a branch-and-bound context, but it typically requires suitable conic solvers and is not compatible with general-purpose NLP software in the presence of other classes of constraints. This motivates the investigation of when simpler but weaker relaxations may be adequate. Comparing the volume (i.e., Lebesgue measure) of the relaxations as a measure of tightness, we lift some of the results related to the simplex case to the box case. In order to compare the volumes of different relaxations in the box case, it is necessary to find an appropriate concave upper bound that preserves the convexity and is minimal, which is more difficult than in the simplex case. To address the challenge beyond the simplex case, the triangulation approach is used.

盒域上凸多元函数的得失视角
在非线性组合优化中,通过二元指示变量对原点和多面体之间的析取进行混合整数非线性优化表述被广泛用于模拟与开展一组活动相关的固定成本和与活动水平相关的凸成本函数。此类模型的透视松弛通常用于在分支和边界背景下求解全局最优性,但它通常需要合适的圆锥求解器,并且在存在其他类别约束的情况下与通用 NLP 软件不兼容。这就促使我们研究更简单但更弱的松弛何时才能满足要求。比较松弛的体积(即 Lebesgue 度量)作为松紧度的度量,我们将一些与单纯形案例相关的结果推广到盒状案例中。为了比较盒状情形下不同松弛的体积,有必要找到一个合适的凹上界,它既能保持凸性,又是最小的,这比单纯形情形下的松弛要困难得多。为了应对这一超越单纯形情况的挑战,我们采用了三角剖分法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信