{"title":"The generalized polar decomposition, the weak complementarity and the parallel sum for adjointable operators on Hilbert $$C^*$$ -modules","authors":"Xiaofeng Zhang, Xiaoyi Tian, Qingxiang Xu","doi":"10.1007/s43037-024-00351-z","DOIUrl":null,"url":null,"abstract":"<p>This paper deals mainly with some aspects of the adjointable operators on Hilbert <span>\\(C^*\\)</span>-modules. A new tool called the generalized polar decomposition for each adjointable operator is introduced and clarified. As an application, the general theory of the weakly complementable operators is set up in the framework of Hilbert <span>\\(C^*\\)</span>-modules. It is proved that there exists an operator equation which has a unique solution, whereas this unique solution fails to be the reduced solution. Some investigations are also carried out in the Hilbert space case. It is proved that there exist a closed subspace <i>M</i> of certain Hilbert space <i>K</i> and an operator <span>\\(T\\in {\\mathbb {B}}(K)\\)</span> such that <i>T</i> is (<i>M</i>, <i>M</i>)-weakly complementable, whereas <i>T</i> fails to be (<i>M</i>, <i>M</i>)-complementable. The solvability of the equation </p><span>$$\\begin{aligned} A:B=X^*AX+(I-X)^*B(I-X) \\quad \\big (X\\in {\\mathbb {B}}(H)\\big ) \\end{aligned}$$</span><p>is also dealt with in the Hilbert space case, where <span>\\(A,B\\in {\\mathbb {B}}(H)\\)</span> are two general positive operators, and <i>A</i> : <i>B</i> denotes their parallel sum. Among other things, it is shown that there exist certain positive operators <i>A</i> and <i>B</i> on the Hilbert space <span>\\(\\ell ^2({\\mathbb {N}})\\oplus \\ell ^2({\\mathbb {N}})\\)</span> such that the above equation has no solution.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00351-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals mainly with some aspects of the adjointable operators on Hilbert \(C^*\)-modules. A new tool called the generalized polar decomposition for each adjointable operator is introduced and clarified. As an application, the general theory of the weakly complementable operators is set up in the framework of Hilbert \(C^*\)-modules. It is proved that there exists an operator equation which has a unique solution, whereas this unique solution fails to be the reduced solution. Some investigations are also carried out in the Hilbert space case. It is proved that there exist a closed subspace M of certain Hilbert space K and an operator \(T\in {\mathbb {B}}(K)\) such that T is (M, M)-weakly complementable, whereas T fails to be (M, M)-complementable. The solvability of the equation
is also dealt with in the Hilbert space case, where \(A,B\in {\mathbb {B}}(H)\) are two general positive operators, and A : B denotes their parallel sum. Among other things, it is shown that there exist certain positive operators A and B on the Hilbert space \(\ell ^2({\mathbb {N}})\oplus \ell ^2({\mathbb {N}})\) such that the above equation has no solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.