Annotating Materials Science Text: A Semi-automated Approach for Crafting Outputs with Gemini Pro

IF 2.4 3区 材料科学 Q3 ENGINEERING, MANUFACTURING
Hasan M. Sayeed, Trupti Mohanty, Taylor D. Sparks
{"title":"Annotating Materials Science Text: A Semi-automated Approach for Crafting Outputs with Gemini Pro","authors":"Hasan M. Sayeed, Trupti Mohanty, Taylor D. Sparks","doi":"10.1007/s40192-024-00356-4","DOIUrl":null,"url":null,"abstract":"<p>Recent advancements in large language models (LLMs) have paved the way for automated information extraction in the materials science domain. However, fine-tuning these models, crucial for effective machine learning pipelines in materials science, is hindered by a lack of pre-annotated data. Manual annotation, a laborious process, exacerbates the challenge. To address this, we introduce a tailored semi-automated annotation process, using Google’s Gemini Pro language model. Our approach focuses on two key tasks: extracting information in structured JSON format and generating abstractive summaries from materials science texts. The collaborative process, a symbiotic effort between human annotators and the LLM, driven by structured prompts and user-guided examples, enhances the annotation quality and augments the LLM’s capacity to comprehend materials science intricacies. Importantly, it streamlines human annotation efforts by leveraging the LLM’s proficient starting point.</p>","PeriodicalId":13604,"journal":{"name":"Integrating Materials and Manufacturing Innovation","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrating Materials and Manufacturing Innovation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40192-024-00356-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in large language models (LLMs) have paved the way for automated information extraction in the materials science domain. However, fine-tuning these models, crucial for effective machine learning pipelines in materials science, is hindered by a lack of pre-annotated data. Manual annotation, a laborious process, exacerbates the challenge. To address this, we introduce a tailored semi-automated annotation process, using Google’s Gemini Pro language model. Our approach focuses on two key tasks: extracting information in structured JSON format and generating abstractive summaries from materials science texts. The collaborative process, a symbiotic effort between human annotators and the LLM, driven by structured prompts and user-guided examples, enhances the annotation quality and augments the LLM’s capacity to comprehend materials science intricacies. Importantly, it streamlines human annotation efforts by leveraging the LLM’s proficient starting point.

Abstract Image

注释材料科学文本:使用 Gemini Pro 制作输出结果的半自动方法
大型语言模型(LLM)的最新进展为材料科学领域的自动信息提取铺平了道路。然而,由于缺乏预先标注的数据,对这些模型进行微调(这对材料科学领域有效的机器学习管道至关重要)的工作受到了阻碍。手动标注是一个费力的过程,加剧了这一挑战。为了解决这个问题,我们使用谷歌的 Gemini Pro 语言模型,推出了一种量身定制的半自动标注流程。我们的方法侧重于两项关键任务:提取结构化 JSON 格式的信息和从材料科学文本中生成抽象摘要。协作过程是人类注释者和 LLM 之间的共生努力,在结构化提示和用户引导示例的驱动下,提高了注释质量,增强了 LLM 理解材料科学复杂性的能力。重要的是,它利用 LLM 的熟练起点,简化了人工标注工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Integrating Materials and Manufacturing Innovation
Integrating Materials and Manufacturing Innovation Engineering-Industrial and Manufacturing Engineering
CiteScore
5.30
自引率
9.10%
发文量
42
审稿时长
39 days
期刊介绍: The journal will publish: Research that supports building a model-based definition of materials and processes that is compatible with model-based engineering design processes and multidisciplinary design optimization; Descriptions of novel experimental or computational tools or data analysis techniques, and their application, that are to be used for ICME; Best practices in verification and validation of computational tools, sensitivity analysis, uncertainty quantification, and data management, as well as standards and protocols for software integration and exchange of data; In-depth descriptions of data, databases, and database tools; Detailed case studies on efforts, and their impact, that integrate experiment and computation to solve an enduring engineering problem in materials and manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信