End-to-end codesign of Hessian-aware quantized neural networks for FPGAs

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Javier Campos, Jovan Mitrevski, Nhan Tran, Zhen Dong, Amir Gholaminejad, Michael W. Mahoney, Javier Duarte
{"title":"End-to-end codesign of Hessian-aware quantized neural networks for FPGAs","authors":"Javier Campos, Jovan Mitrevski, Nhan Tran, Zhen Dong, Amir Gholaminejad, Michael W. Mahoney, Javier Duarte","doi":"10.1145/3662000","DOIUrl":null,"url":null,"abstract":"<p>We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs) for efficient field-programmable gate array (FPGA) hardware. Our approach leverages Hessian-aware quantization (HAWQ) of NNs, the Quantized Open Neural Network Exchange (QONNX) intermediate representation, and the hls4ml tool flow for transpiling NNs into FPGA firmware. This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow that can be deployed for real-time machine-learning applications in a wide range of scientific and industrial settings. We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the CERN Large Hadron Collider (LHC). Given the high collision rate, all data processing must be implemented on FPGA hardware within the strict area and latency requirements. Based on these constraints, we implement an optimized mixed-precision NN classifier for high-momentum particle jets in simulated LHC proton-proton collisions.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"44 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3662000","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs) for efficient field-programmable gate array (FPGA) hardware. Our approach leverages Hessian-aware quantization (HAWQ) of NNs, the Quantized Open Neural Network Exchange (QONNX) intermediate representation, and the hls4ml tool flow for transpiling NNs into FPGA firmware. This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow that can be deployed for real-time machine-learning applications in a wide range of scientific and industrial settings. We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the CERN Large Hadron Collider (LHC). Given the high collision rate, all data processing must be implemented on FPGA hardware within the strict area and latency requirements. Based on these constraints, we implement an optimized mixed-precision NN classifier for high-momentum particle jets in simulated LHC proton-proton collisions.

面向 FPGA 的 Hessian 感知量化神经网络的端到端编码设计
我们为高效现场可编程门阵列(FPGA)硬件的协同设计神经网络(NN)的训练和实施开发了端到端的工作流程。我们的方法利用了神经网络的黑森感知量化 (HAWQ)、量化开放神经网络交换 (QONNX) 中间表示法和 hls4ml 工具流程,用于将神经网络移植到 FPGA 固件中。这使得非专业人员也能在硬件中实现高效的神经网络,在一个开源的工作流程中,可以在广泛的科学和工业环境中部署实时机器学习应用。我们在一个涉及触发决策的粒子物理应用中演示了该工作流,该应用必须在欧洲核子研究中心大型强子对撞机(LHC)40 MHz 的碰撞速率下运行。考虑到高碰撞率,所有数据处理都必须在严格的面积和延迟要求下在 FPGA 硬件上实现。基于这些约束条件,我们在模拟的大型强子对撞机质子-质子对撞中为高动量粒子射流实现了一个优化的混合精度 NN 分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.90
自引率
8.70%
发文量
79
审稿时长
>12 weeks
期刊介绍: TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right. Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications. -The board and systems architectures of a reconfigurable platform. -Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity. -Languages and compilers for reconfigurable systems. -Logic synthesis and related tools, as they relate to reconfigurable systems. -Applications on which success can be demonstrated. The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.) In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信