Critical Subgraphs of Schrijver Graphs for the Fractional Chromatic Number

Pub Date : 2024-05-10 DOI:10.1007/s00373-024-02782-9
Anna Gujgiczer, Gábor Simonyi
{"title":"Critical Subgraphs of Schrijver Graphs for the Fractional Chromatic Number","authors":"Anna Gujgiczer, Gábor Simonyi","doi":"10.1007/s00373-024-02782-9","DOIUrl":null,"url":null,"abstract":"<p>Schrijver graphs are vertex-color-critical subgraphs of Kneser graphs having the same chromatic number. They also share the value of their fractional chromatic number but Schrijver graphs are not critical for that. Here we present an induced subgraph of every Schrijver graph that is vertex-critical with respect to the fractional chromatic number. These subgraphs turn out to be isomorphic with certain circular complete graphs. We also characterize the critical edges within this subgraph.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02782-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Schrijver graphs are vertex-color-critical subgraphs of Kneser graphs having the same chromatic number. They also share the value of their fractional chromatic number but Schrijver graphs are not critical for that. Here we present an induced subgraph of every Schrijver graph that is vertex-critical with respect to the fractional chromatic number. These subgraphs turn out to be isomorphic with certain circular complete graphs. We also characterize the critical edges within this subgraph.

Abstract Image

分享
查看原文
分数色度数的 Schrijver 图临界子图
Schrijver 图是具有相同色度数的 Kneser 图的顶点颜色临界子图。它们还共享分数色度数的值,但 Schrijver 图对此并不关键。在这里,我们提出了每个 Schrijver 图的诱导子图,这些子图在小数色度数方面都是顶点临界图。这些子图与某些圆形完整图同构。我们还描述了该子图中临界边的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信