{"title":"Finite Population Size Effects on Optimal Communication for Social Foragers","authors":"Hyunjoong Kim, Yoichiro Mori, Joshua B. Plotkin","doi":"10.1137/23m1590007","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 3, Page 915-939, June 2024. <br/> Abstract. Foraging is crucial for animals to survive. Many species forage in groups, as individuals communicate to share information about the location of available resources. For example, eusocial foragers, such as honey bees and many ants, recruit members from their central hive or nest to a known foraging site. However, the optimal level of communication and recruitment depends on the overall group size, the distribution of available resources, and the extent of interference between multiple individuals attempting to forage from a site. In this paper, we develop a discrete-time Markov chain model of eusocial foragers, who communicate information with a certain probability. We compare the stochastic model and its corresponding infinite population limit. We find that foraging efficiency tapers off when recruitment probability is too high, a phenomenon that does not occur in the infinite population model, even though it occurs for any finite population size. The marginal inefficiency at high recruitment probability increases as the population increases, similar to a boundary layer. In particular, we prove there is a significant gap between the foraging efficiency of finite and infinite population models in the extreme case of complete communication. We also analyze this phenomenon by approximating the stationary distribution of foragers over sites in terms of mean escape times from multiple quasi-steady states. We conclude that, for any finite group of foragers, an individual who has found a resource should only sometimes recruit others to the same resource. We discuss the relationship between our analysis and multiagent multiarm bandit problems.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1590007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Mathematics, Volume 84, Issue 3, Page 915-939, June 2024. Abstract. Foraging is crucial for animals to survive. Many species forage in groups, as individuals communicate to share information about the location of available resources. For example, eusocial foragers, such as honey bees and many ants, recruit members from their central hive or nest to a known foraging site. However, the optimal level of communication and recruitment depends on the overall group size, the distribution of available resources, and the extent of interference between multiple individuals attempting to forage from a site. In this paper, we develop a discrete-time Markov chain model of eusocial foragers, who communicate information with a certain probability. We compare the stochastic model and its corresponding infinite population limit. We find that foraging efficiency tapers off when recruitment probability is too high, a phenomenon that does not occur in the infinite population model, even though it occurs for any finite population size. The marginal inefficiency at high recruitment probability increases as the population increases, similar to a boundary layer. In particular, we prove there is a significant gap between the foraging efficiency of finite and infinite population models in the extreme case of complete communication. We also analyze this phenomenon by approximating the stationary distribution of foragers over sites in terms of mean escape times from multiple quasi-steady states. We conclude that, for any finite group of foragers, an individual who has found a resource should only sometimes recruit others to the same resource. We discuss the relationship between our analysis and multiagent multiarm bandit problems.
期刊介绍:
SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.