Understanding electrochemically induced olefin complexation: towards electrochemical olefin–paraffin separations†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Toshihiro Akashige, Ramraj Vemuri, César A. Urbina Blanco and Miguel A. Modestino
{"title":"Understanding electrochemically induced olefin complexation: towards electrochemical olefin–paraffin separations†","authors":"Toshihiro Akashige, Ramraj Vemuri, César A. Urbina Blanco and Miguel A. Modestino","doi":"10.1039/D4RE00145A","DOIUrl":null,"url":null,"abstract":"<p >Olefin–paraffin separation is a critical yet energy-intensive process in the chemical industry, accounting for over 250 trillion BTU per year of global energy consumption. This work explores the use of a redox-active nickel maleonitriledithiolate complex for olefin–paraffin separations. Key performance factors, namely the electrochemical oxidation of the complex and olefin capture utilization fraction, were systematically quantified. Electrochemical studies revealed near-complete oxidation of Ni(<small>II</small>) to Ni(<small>IV</small>) species, suggesting that the electrochemical oxidation step is not a limiting factor in olefin capture. The utilization fraction was found to be strongly dependent on the complexation equilibrium behavior between olefin-bound and unbound states of the complex. Time-resolved kinetic measurements unveiled a sluggish complexation rate, requiring over 36 hours to approach equilibrium. These insights highlight the importance of driving the complexation equilibrium and improving the kinetics to enhance the performance of Ni-based electrochemical swing absorbers for energy-efficient olefin–paraffin separations. The findings lay the groundwork for future optimization strategies and industrial implementation of this sustainable separation technology.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 8","pages":" 2171-2179"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00145a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Olefin–paraffin separation is a critical yet energy-intensive process in the chemical industry, accounting for over 250 trillion BTU per year of global energy consumption. This work explores the use of a redox-active nickel maleonitriledithiolate complex for olefin–paraffin separations. Key performance factors, namely the electrochemical oxidation of the complex and olefin capture utilization fraction, were systematically quantified. Electrochemical studies revealed near-complete oxidation of Ni(II) to Ni(IV) species, suggesting that the electrochemical oxidation step is not a limiting factor in olefin capture. The utilization fraction was found to be strongly dependent on the complexation equilibrium behavior between olefin-bound and unbound states of the complex. Time-resolved kinetic measurements unveiled a sluggish complexation rate, requiring over 36 hours to approach equilibrium. These insights highlight the importance of driving the complexation equilibrium and improving the kinetics to enhance the performance of Ni-based electrochemical swing absorbers for energy-efficient olefin–paraffin separations. The findings lay the groundwork for future optimization strategies and industrial implementation of this sustainable separation technology.

Abstract Image

了解电化学诱导的烯烃络合:实现电化学烯烃-烷烃分离
烯烃-石蜡分离是化学工业中一个关键的能源密集型过程,占全球能源消耗的 250 万亿英热单位/年。这项研究探索了将具有氧化还原活性的马来酰亚胺基二硫酸镍复合物用于烯烃-石蜡分离的方法。系统地量化了关键性能因素,即络合物的电化学氧化和烯烃捕获利用率。电化学研究发现,Ni(II) 几乎完全氧化成 Ni(IV) 物种,这表明电化学氧化步骤不是烯烃捕获的限制因素。研究发现,利用率在很大程度上取决于络合物的烯烃结合态和非结合态之间的复合平衡行为。时间分辨动力学测量揭示了缓慢的复合速率,需要超过 36 小时才能接近平衡。这些发现凸显了推动络合平衡和改善动力学对提高镍基电化学摇摆吸收器的性能以实现烯烃-石蜡高效分离的重要性。这些发现为未来的优化策略和这种可持续分离技术的工业应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信