On the Boundedness of Non-standard Rough Singular Integral Operators

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Guoen Hu, Xiangxing Tao, Zhidan Wang, Qingying Xue
{"title":"On the Boundedness of Non-standard Rough Singular Integral Operators","authors":"Guoen Hu, Xiangxing Tao, Zhidan Wang, Qingying Xue","doi":"10.1007/s00041-024-10086-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Omega \\)</span> be a homogeneous function of degree zero, have vanishing moment of order one on the unit sphere <span>\\(\\mathbb {S}^{d-1}\\)</span>(<span>\\(d\\ge 2\\)</span>). In this paper, our object of investigation is the following rough non-standard singular integral operator </p><span>$$\\begin{aligned} T_{\\Omega ,\\,A}f(x)=\\mathrm{p.\\,v.}\\int _{{\\mathbb {R}}^d}\\frac{\\Omega (x-y)}{|x-y|^{d+1}}\\big (A(x)-A(y)-\\nabla A(y)(x-y)\\big )f(y)\\textrm{d}y, \\end{aligned}$$</span><p>where <i>A</i> is a function defined on <span>\\({\\mathbb {R}}^d\\)</span> with derivatives of order one in <span>\\({\\textrm{BMO}}({\\mathbb {R}}^d)\\)</span>. We show that <span>\\(T_{\\Omega ,\\,A}\\)</span> enjoys the endpoint <span>\\(L\\log L\\)</span> type estimate and is <span>\\(L^p\\)</span> bounded if <span>\\(\\Omega \\in L(\\log L)^{2}({\\mathbb {S}}^{d-1})\\)</span>. These results essentially improve the previous known results given by Hofmann (Stud Math 109:105–131, 1994) for the <span>\\(L^p\\)</span> boundedness of <span>\\(T_{\\Omega ,\\,A}\\)</span> under the condition <span>\\(\\Omega \\in L^{q}({\\mathbb {S}}^{d-1})\\)</span> <span>\\((q&gt;1)\\)</span>, Hu and Yang (Bull Lond Math Soc 35:759–769, 2003) for the endpoint weak <span>\\(L\\log L\\)</span> type estimates when <span>\\(\\Omega \\in \\textrm{Lip}_{\\alpha }({\\mathbb {S}}^{d-1})\\)</span> for some <span>\\(\\alpha \\in (0,\\,1]\\)</span>.</p>","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"65 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fourier Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10086-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\Omega \) be a homogeneous function of degree zero, have vanishing moment of order one on the unit sphere \(\mathbb {S}^{d-1}\)(\(d\ge 2\)). In this paper, our object of investigation is the following rough non-standard singular integral operator

$$\begin{aligned} T_{\Omega ,\,A}f(x)=\mathrm{p.\,v.}\int _{{\mathbb {R}}^d}\frac{\Omega (x-y)}{|x-y|^{d+1}}\big (A(x)-A(y)-\nabla A(y)(x-y)\big )f(y)\textrm{d}y, \end{aligned}$$

where A is a function defined on \({\mathbb {R}}^d\) with derivatives of order one in \({\textrm{BMO}}({\mathbb {R}}^d)\). We show that \(T_{\Omega ,\,A}\) enjoys the endpoint \(L\log L\) type estimate and is \(L^p\) bounded if \(\Omega \in L(\log L)^{2}({\mathbb {S}}^{d-1})\). These results essentially improve the previous known results given by Hofmann (Stud Math 109:105–131, 1994) for the \(L^p\) boundedness of \(T_{\Omega ,\,A}\) under the condition \(\Omega \in L^{q}({\mathbb {S}}^{d-1})\) \((q>1)\), Hu and Yang (Bull Lond Math Soc 35:759–769, 2003) for the endpoint weak \(L\log L\) type estimates when \(\Omega \in \textrm{Lip}_{\alpha }({\mathbb {S}}^{d-1})\) for some \(\alpha \in (0,\,1]\).

论非标准粗糙奇异积分算子的有界性
让 \(\Omega \)是一个零度均质函数,在单位球上有一阶消失矩 \(\mathbb {S}^{d-1}\)(\(d\ge 2\)).在本文中,我们的研究对象是下面这个粗糙的非标准奇异积分算子 $$\begin{aligned}T_{Omega ,\,A}f(x)=\mathrm{p.\,v.}int _{{\{mathbb {R}}^d}\frac{Omega (x-y)}{|x-y|^{d+1}}\big (A(x)-A(y)-\nabla A(y)(x-y)\big )f(y)\textrm{d}y、\end{aligned}$where A is a function defined on \({\mathbb {R}}^d\) with derivatives of order one in \({text\rm{BMO}}({\mathbb {R}}^d)\).我们证明,如果 \(\Omega \in L(\log L)^{2}({\mathbb {S}}^{d-1})\) 享有端点 \(L\log L\) 类型估计,并且是 \(L^p\) 有界的。这些结果基本上改进了霍夫曼(Stud Math 109:105-131,1994)之前给出的在 \(\Omega \in L^{q}({\mathbb {S}}^{d-1}) 条件下 \(T_{\Omega ,\,A}\)的\(L^p\)有界性的已知结果。)\Hu and Yang (Bull Lond Math Soc 35:759-769, 2003) for the endpoint weak \(L\log L\) type estimates when \(\Omega \in \textrm{Lip}_{\alpha }({\mathbb {S}}^{d-1})\) for some \(\alpha \in (0,\,1]\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
16.70%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The Journal of Fourier Analysis and Applications will publish results in Fourier analysis, as well as applicable mathematics having a significant Fourier analytic component. Appropriate manuscripts at the highest research level will be accepted for publication. Because of the extensive, intricate, and fundamental relationship between Fourier analysis and so many other subjects, selected and readable surveys will also be published. These surveys will include historical articles, research tutorials, and expositions of specific topics. TheJournal of Fourier Analysis and Applications will provide a perspective and means for centralizing and disseminating new information from the vantage point of Fourier analysis. The breadth of Fourier analysis and diversity of its applicability require that each paper should contain a clear and motivated introduction, which is accessible to all of our readers. Areas of applications include the following: antenna theory * crystallography * fast algorithms * Gabor theory and applications * image processing * number theory * optics * partial differential equations * prediction theory * radar applications * sampling theory * spectral estimation * speech processing * stochastic processes * time-frequency analysis * time series * tomography * turbulence * uncertainty principles * wavelet theory and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信