Counting and signed counting permutations by descent-based statistics

Pub Date : 2024-05-09 DOI:10.1007/s10801-024-01330-1
Yao Dong, Zhicong Lin
{"title":"Counting and signed counting permutations by descent-based statistics","authors":"Yao Dong, Zhicong Lin","doi":"10.1007/s10801-024-01330-1","DOIUrl":null,"url":null,"abstract":"<p>The original motivation of this paper was to find the context-free grammar for the joint distribution of peaks and valleys on permutations. Although such attempt was unsuccessful, we can obtain noncommutative symmetric function identities for the joint distributions of several descent-based statistics, including peaks, valleys and even/odd descents, on permutations via Zhuang’s generalized run theorem. Our results extend in a unified way several generating function formulas exist in the literature, including formulas of Carlitz and Scoville (Discrete Math 5:45–59, 1973; J Reine Angew Math 265:110–137, 1974), J. Combin. Theory Ser. A, 20: 336-356 (1976), Zhuang (Adv Appl Math 90:86–144, 2017), Pan and Zeng (Adv Appl Math 104:85–99, 2019; Discrete Math 346:113575, 2023). As applications of these generating function formulas, Wachs’ involution and Foata–Strehl action on permutations, we also investigate the signed counting of even and odd descents, and of descents and peaks, which provide two generalizations of Désarménien and Foata’s classical signed Eulerian identity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01330-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The original motivation of this paper was to find the context-free grammar for the joint distribution of peaks and valleys on permutations. Although such attempt was unsuccessful, we can obtain noncommutative symmetric function identities for the joint distributions of several descent-based statistics, including peaks, valleys and even/odd descents, on permutations via Zhuang’s generalized run theorem. Our results extend in a unified way several generating function formulas exist in the literature, including formulas of Carlitz and Scoville (Discrete Math 5:45–59, 1973; J Reine Angew Math 265:110–137, 1974), J. Combin. Theory Ser. A, 20: 336-356 (1976), Zhuang (Adv Appl Math 90:86–144, 2017), Pan and Zeng (Adv Appl Math 104:85–99, 2019; Discrete Math 346:113575, 2023). As applications of these generating function formulas, Wachs’ involution and Foata–Strehl action on permutations, we also investigate the signed counting of even and odd descents, and of descents and peaks, which provide two generalizations of Désarménien and Foata’s classical signed Eulerian identity.

Abstract Image

分享
查看原文
基于后裔统计的计数和符号计数排列
本文的最初动机是寻找峰谷在排列组合上联合分布的无上下文语法。虽然这一尝试并不成功,但我们可以通过庄的广义运行定理,得到几种基于下降的统计量(包括峰值、谷值和偶数/奇数下降)在包数上的联合分布的非交换对称函数标识。我们的结果以统一的方式扩展了文献中已有的几个生成函数公式,包括 Carlitz 和 Scoville 的公式(Discrete Math 5:45-59, 1973; J Reine Angew Math 265:110-137, 1974)、J. Combin.A, 20: 336-356 (1976), Zhuang (Adv Appl Math 90:86-144, 2017), Pan and Zeng (Adv Appl Math 104:85-99, 2019; Discrete Math 346:113575, 2023)。作为这些生成函数公式、Wachs 内卷和 Foata-Strehl 对排列的作用的应用,我们还研究了偶数和奇数下降以及下降和峰值的带符号计数,它们提供了 Désarménien 和 Foata 经典带符号欧拉同一性的两个广义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信