{"title":"Counting and signed counting permutations by descent-based statistics","authors":"Yao Dong, Zhicong Lin","doi":"10.1007/s10801-024-01330-1","DOIUrl":null,"url":null,"abstract":"<p>The original motivation of this paper was to find the context-free grammar for the joint distribution of peaks and valleys on permutations. Although such attempt was unsuccessful, we can obtain noncommutative symmetric function identities for the joint distributions of several descent-based statistics, including peaks, valleys and even/odd descents, on permutations via Zhuang’s generalized run theorem. Our results extend in a unified way several generating function formulas exist in the literature, including formulas of Carlitz and Scoville (Discrete Math 5:45–59, 1973; J Reine Angew Math 265:110–137, 1974), J. Combin. Theory Ser. A, 20: 336-356 (1976), Zhuang (Adv Appl Math 90:86–144, 2017), Pan and Zeng (Adv Appl Math 104:85–99, 2019; Discrete Math 346:113575, 2023). As applications of these generating function formulas, Wachs’ involution and Foata–Strehl action on permutations, we also investigate the signed counting of even and odd descents, and of descents and peaks, which provide two generalizations of Désarménien and Foata’s classical signed Eulerian identity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01330-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The original motivation of this paper was to find the context-free grammar for the joint distribution of peaks and valleys on permutations. Although such attempt was unsuccessful, we can obtain noncommutative symmetric function identities for the joint distributions of several descent-based statistics, including peaks, valleys and even/odd descents, on permutations via Zhuang’s generalized run theorem. Our results extend in a unified way several generating function formulas exist in the literature, including formulas of Carlitz and Scoville (Discrete Math 5:45–59, 1973; J Reine Angew Math 265:110–137, 1974), J. Combin. Theory Ser. A, 20: 336-356 (1976), Zhuang (Adv Appl Math 90:86–144, 2017), Pan and Zeng (Adv Appl Math 104:85–99, 2019; Discrete Math 346:113575, 2023). As applications of these generating function formulas, Wachs’ involution and Foata–Strehl action on permutations, we also investigate the signed counting of even and odd descents, and of descents and peaks, which provide two generalizations of Désarménien and Foata’s classical signed Eulerian identity.