{"title":"Use of Microalgae Biomass to Synthesize Marketable Products: 2. Modern Approaches to Integrated Biorefinery of Microalgae Biomass","authors":"Yu. V. Samoylova, K. N. Sorokina, V. N. Parmon","doi":"10.1134/S2070050424010057","DOIUrl":null,"url":null,"abstract":"<p>The paper provides a review of reports in the field of microalgae biomass conversion to various types of biofuels (fatty acid methyl esters, ethanol, butanol, hydrogen) and marketable chemicals, in particular, polyunsaturated fatty acids, pigments, and proteins, using modern chemical and biotechnological approaches. This review addresses the synthesis of products using various strategies applied to develop modern approaches to the integrated biorefinery of microalgae biomass.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 1","pages":"69 - 76"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050424010057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The paper provides a review of reports in the field of microalgae biomass conversion to various types of biofuels (fatty acid methyl esters, ethanol, butanol, hydrogen) and marketable chemicals, in particular, polyunsaturated fatty acids, pigments, and proteins, using modern chemical and biotechnological approaches. This review addresses the synthesis of products using various strategies applied to develop modern approaches to the integrated biorefinery of microalgae biomass.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.