{"title":"Use of Microalgae Biomass to Synthesize Marketable Products: 3. Production of Motor Fuels from Microalgae Biomass Using Catalytic Approaches","authors":"K. N. Sorokina, Yu. V. Samoylova, V. N. Parmon","doi":"10.1134/S2070050424010082","DOIUrl":null,"url":null,"abstract":"<p>The review addresses the main approaches used in the thermochemical and catalytic conversion of microalgae biomass (hydrothermal liquefaction, gasification, transesterification, pyrolysis) to produce biofuels. The key conditions that determine the reaction product yield using bio-oil production catalysts and approaches to bio-oil refining are discussed. It is shown that the use of bifunctional acid–base catalysts is most relevant for transesterification processes. The gasification and pyrolysis processes are used less frequently, because the former is accompanied by the formation of CO<sub>2</sub>, and the latter is characterized by the formation of a large amount of oxidized compounds that deteriorate the quality of bio-oil.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 1","pages":"77 - 88"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050424010082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The review addresses the main approaches used in the thermochemical and catalytic conversion of microalgae biomass (hydrothermal liquefaction, gasification, transesterification, pyrolysis) to produce biofuels. The key conditions that determine the reaction product yield using bio-oil production catalysts and approaches to bio-oil refining are discussed. It is shown that the use of bifunctional acid–base catalysts is most relevant for transesterification processes. The gasification and pyrolysis processes are used less frequently, because the former is accompanied by the formation of CO2, and the latter is characterized by the formation of a large amount of oxidized compounds that deteriorate the quality of bio-oil.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.