Ilan Ben-Zvi, Graeme Burt, Alejandro Castilla, Alick Macpherson, Nicholas Shipman
{"title":"Conceptual design of a high reactive-power ferroelectric fast reactive tuner","authors":"Ilan Ben-Zvi, Graeme Burt, Alejandro Castilla, Alick Macpherson, Nicholas Shipman","doi":"10.1103/physrevaccelbeams.27.052001","DOIUrl":null,"url":null,"abstract":"We present a novel design of a ferroelectric fast reactive tuner (FE-FRT) capable of modulating mega-VAR reactive power on a submicrosecond timescale. The high reactive power capability of our design extends the range of applications of reactive tuners to numerous applications. We present a detailed analytical model of the performance of a megawatt-class reactive power device and benchmark it against finite-element method eigenmode and frequency domain electromagnetic simulations. We introduce new features, including an annulus design for the ferroelectric capacitors and capacitive window coupling to the cavity. We consider thermal design issues and nonlinear effects in the ferroelectric. The model covers several configurations, allowing control of the frequency of superconducting and normal-conducting cavities in a variety of applications and frequencies. We calculate that the FE-FRT designed should be capable of handling around 0.45 MVAR of reactive power with around 3 kW of resistive losses, providing a frequency tuning range of 8 kHz in an example of 400 MHz cavity geometry.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"25 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.052001","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel design of a ferroelectric fast reactive tuner (FE-FRT) capable of modulating mega-VAR reactive power on a submicrosecond timescale. The high reactive power capability of our design extends the range of applications of reactive tuners to numerous applications. We present a detailed analytical model of the performance of a megawatt-class reactive power device and benchmark it against finite-element method eigenmode and frequency domain electromagnetic simulations. We introduce new features, including an annulus design for the ferroelectric capacitors and capacitive window coupling to the cavity. We consider thermal design issues and nonlinear effects in the ferroelectric. The model covers several configurations, allowing control of the frequency of superconducting and normal-conducting cavities in a variety of applications and frequencies. We calculate that the FE-FRT designed should be capable of handling around 0.45 MVAR of reactive power with around 3 kW of resistive losses, providing a frequency tuning range of 8 kHz in an example of 400 MHz cavity geometry.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.