Surface groups in uniform lattices of some semi-simple groups

IF 4.9 1区 数学 Q1 MATHEMATICS
Jeremy Kahn, François Labourie, Mozes Shahar
{"title":"Surface groups in uniform lattices of some semi-simple groups","authors":"Jeremy Kahn, François Labourie, Mozes Shahar","doi":"10.4310/acta.2024.v232.n1.a2","DOIUrl":null,"url":null,"abstract":"We show that uniform lattices in some semi-simple groups (notably complex ones) admit Anosov surface subgroups. This result has a quantitative version: we introduce a notion, called $K$-Sullivan maps, which generalizes the notion of $K$-quasi-circles in hyperbolic geometry, and show in particular that Sullivan maps are Hölder. Using this notion, we show a quantitative version of our surface subgroup theorem, and in particular that one can obtain $K$-Sullivan limit maps, as close as one wants to smooth round circles. All these results use the coarse geometry of “path of triangles” in a certain flag manifold, and we prove an analogue to the Morse Lemma for quasi-geodesics in that context.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2024.v232.n1.a2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that uniform lattices in some semi-simple groups (notably complex ones) admit Anosov surface subgroups. This result has a quantitative version: we introduce a notion, called $K$-Sullivan maps, which generalizes the notion of $K$-quasi-circles in hyperbolic geometry, and show in particular that Sullivan maps are Hölder. Using this notion, we show a quantitative version of our surface subgroup theorem, and in particular that one can obtain $K$-Sullivan limit maps, as close as one wants to smooth round circles. All these results use the coarse geometry of “path of triangles” in a certain flag manifold, and we prove an analogue to the Morse Lemma for quasi-geodesics in that context.
一些半简单群均匀网格中的面群
我们证明,一些半简单群(尤其是复群)中的均匀网格允许阿诺索夫曲面子群。这一结果还有一个定量版本:我们引入了一个概念,称为 $K$-Sullivan 映射,它概括了双曲几何中的 $K$-quasi-circles 概念,并特别证明了 Sullivan 映射是 Hölder 映射。利用这一概念,我们展示了曲面子群定理的定量版本,特别是可以得到 $K$-Sullivan 极限映射,与光滑圆非常接近。所有这些结果都使用了某一旗流形中 "三角形路径 "的粗几何学,我们还证明了在此背景下准大地线的莫尔斯定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mathematica
Acta Mathematica 数学-数学
CiteScore
6.00
自引率
2.70%
发文量
6
审稿时长
>12 weeks
期刊介绍: Publishes original research papers of the highest quality in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信