Some Relations Between Schwarz–Pick Inequality and von Neumann’s Inequality

IF 0.7 4区 数学 Q2 MATHEMATICS
Kenta Kojin
{"title":"Some Relations Between Schwarz–Pick Inequality and von Neumann’s Inequality","authors":"Kenta Kojin","doi":"10.1007/s11785-024-01526-0","DOIUrl":null,"url":null,"abstract":"<p>We study a Schwarz–Pick type inequality for the Schur–Agler class <span>\\(SA(B_{\\delta })\\)</span>. In our operator theoretical approach, von Neumann’s inequality for a class of generic tuples of <span>\\(2\\times 2\\)</span> matrices plays an important role rather than holomorphy. In fact, the class <span>\\(S_{2, gen}(B_{\\Delta })\\)</span> consisting of functions that satisfy the inequality for those matrices enjoys </p><span>$$\\begin{aligned} d_{\\mathbb {D}}(f(z), f(w))\\le d_{\\Delta }(z, w) \\;\\;(z,w\\in B_{\\Delta }, f\\in S_{2, gen}(B_{\\Delta })). \\end{aligned}$$</span><p>Here, <span>\\(d_{\\Delta }\\)</span> is a function defined by a matrix <span>\\(\\Delta \\)</span> of functions. Later, we focus on the case when <span>\\(\\Delta \\)</span> is a matrix of holomorphic functions. We use the pseudo-distance <span>\\(d_{\\Delta }\\)</span> to give a sufficient condition on a diagonalizable commuting tuple <i>T</i> acting on <span>\\(\\mathbb {C}^2\\)</span> for <span>\\(B_{\\Delta }\\)</span> to be a complete spectral domain for <i>T</i>. We apply this sufficient condition to generalizing von Neumann’s inequalities studied by Drury (In: Blei RC, Sidney SJ (eds) Banach spaces, harmonic analysis, and probability theory, lecture notes in mathematics, vol 995. Springer, Berlin, pp 14–32, 1983) and by Hartz–Richter–Shalit (Math Z 301:3877–3894, 2022).</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"31 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01526-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a Schwarz–Pick type inequality for the Schur–Agler class \(SA(B_{\delta })\). In our operator theoretical approach, von Neumann’s inequality for a class of generic tuples of \(2\times 2\) matrices plays an important role rather than holomorphy. In fact, the class \(S_{2, gen}(B_{\Delta })\) consisting of functions that satisfy the inequality for those matrices enjoys

$$\begin{aligned} d_{\mathbb {D}}(f(z), f(w))\le d_{\Delta }(z, w) \;\;(z,w\in B_{\Delta }, f\in S_{2, gen}(B_{\Delta })). \end{aligned}$$

Here, \(d_{\Delta }\) is a function defined by a matrix \(\Delta \) of functions. Later, we focus on the case when \(\Delta \) is a matrix of holomorphic functions. We use the pseudo-distance \(d_{\Delta }\) to give a sufficient condition on a diagonalizable commuting tuple T acting on \(\mathbb {C}^2\) for \(B_{\Delta }\) to be a complete spectral domain for T. We apply this sufficient condition to generalizing von Neumann’s inequalities studied by Drury (In: Blei RC, Sidney SJ (eds) Banach spaces, harmonic analysis, and probability theory, lecture notes in mathematics, vol 995. Springer, Berlin, pp 14–32, 1983) and by Hartz–Richter–Shalit (Math Z 301:3877–3894, 2022).

施瓦茨-皮克不等式与冯-诺依曼不等式之间的某些关系
我们研究了 Schur-Agler 类 \(SA(B_{\delta })\的 Schwarz-Pick 型不等式。)在我们的算子理论方法中,冯-诺依曼(von Neumann)不等式对于一类(2\times 2\ )矩阵的通用元组起着重要作用,而不是全态作用。事实上,由满足这些矩阵不等式的函数组成的类\(S_{2, gen}(B_{\Delta })享有 $$\begin{aligned} d_{mathbb {D}}(f(z), f(w))\le d_{\Delta }(z, w) \;\;(z,w\in B_{\Delta }, f\in S_{2, gen}(B_{\Delta })).\end{aligned}$$这里,\(d_{\Delta }\) 是一个由函数矩阵 \(\Delta \) 定义的函数。稍后,我们将重点讨论当 \(\Delta \) 是全形函数矩阵时的情况。我们使用伪距 \(d_{\Delta }\) 给出了作用于 \(\mathbb {C}^2\) 的可对角换向元组 T 的充分条件,即 \(B_{\Delta }\) 是 T 的完整谱域:Blei RC, Sidney SJ (eds) Banach spaces, harmonic analysis, and probability theory, lecture notes in mathematics, vol. 995.Springer, Berlin, pp 14-32, 1983) 和 Hartz-Richter-Shalit (Math Z 301:3877-3894, 2022)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信